Background Removal
U-Net Like(VGG Encoder) Pretrained Model For Human Body Detection (pytorch, Semantic Segmentation)
Quick Links
Implementation
VGG Encoder Implementation
def VGGEncoder():
weights = VGG16_Weights.DEFAULT
base_model = vgg16(weights=weights)
base_model.training = False
encoder_seq = nn.ModuleList()
moduls = nn.Sequential()
for layer in list(base_model.features.children()):
if isinstance(layer, nn.modules.pooling.MaxPool2d):
encoder_seq.append(moduls)
moduls = nn.Sequential()
else:
moduls.append(layer)
return encoder_seq
Usage:
detector = BodyDetector("model_weights/bgrm-bh.pth")
Load model.
fname = RandomSample("background folder", '*')
bg = LoadImage(fname)
Read background image.
fname = RandomSample("image folder")
img = LoadImage(fname)
img_resize = cv2.resize(img, (224, 224), interpolation = cv2.INTER_AREA)
Read image in bgr mode and resize it to 224*224.
mask = detector.DetectBody(img_resize)
Detect object(human body) area.
res = ReplaceBG(img, mask, bg)
Replace current background with loaded background image.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.