license: apache-2.0
language:
- th
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- openthaigpt
- llama
🇹🇭 OpenThaiGPT 70b 1.0.0
🇹🇭 OpenThaiGPT 70b Version 1.0.0 is an advanced 70-billion-parameter Thai language chat model based on LLaMA v2. It has been specifically fine-tuned for Thai instructions and enhanced by incorporating over 10,000 of the most commonly used Thai words into the large language model's (LLM) dictionary, significantly boosting its response speed.
Highlights
- Leading-edge Thai language LLM, setting new benchmarks by achieving the highest average scores across 9 Thai language evaluations when compared to all other open-source Thai LLMs.
- Support for extended conversations across multiple turns.
- Integration of Retrieval Augmented Generation (RAG) for enriched response generation.
- Generation speeds increased by tenfold, thanks to the addition of 10,000 frequently used Thai words to the model's dictionary.
- Built upon a foundation of more than 65 billion Thai language words and meticulously fine-tuned with over 1 million Thai instruction examples.
- Capable of understanding and processing input contexts of up to 4096 Thai words, allowing for detailed and complex instructions.
Benchmark by Multiple Choices Thai Exams
Please take a look at OTG70b (March2024)
column for this model's evaluation result
Exams | OTG 7b (Aug 2023) | OTG 13b (Dec 2023) | OTG 7b (March 2024) | OTG 13b (March 2024) | OTG 70b (March 2024) | SeaLLM 7b v1 | SeaLLM 7b v2 | TyphoonGPT 7b | SeaLion 7b | WanchanGLM 7b | Sailor-7B-Chat | GPT3.5 | GPT4 | Gemini Pro | Gemini 1.5 | Claude 3 Haiku | Claude 3 Sonnet | Claude 3 Opus |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-Level | 17.50% | 34.17% | 25.00% | 30.83% | 45.83% | 18.33% | 34.17% | N/A* | 21.67% | 17.50% | 40.00% | 38.33% | 65.83% | 56.67% | 55.83% | 58.33% | 59.17% | 77.50% |
TGAT | 24.00% | 22.00% | 22.00% | 36.00% | 36.00% | 14.00% | 28.00% | N/A* | 24.00% | 16.00% | 34.00% | 28.00% | 44.00% | 22.00% | 28.00% | 36.00% | 34.00% | 46.00% |
TPAT1 | 22.50% | 47.50% | 42.50% | 27.50% | 62.50% | 22.50% | 27.50% | N/A* | 22.50% | 17.50% | 40.00% | 45.00% | 52.50% | 52.50% | 50.00% | 52.50% | 50.00% | 62.50% |
ic_all_test | 8.00% | 28.00% | 76.00% | 84.00% | 68.00% | 16.00% | 28.00% | N/A* | 24.00% | 16.00% | 24.00% | 40.00% | 64.00% | 52.00% | 32.00% | 44.00% | 64.00% | 72.00% |
facebook_beleble_tha | 25.00% | 45.00% | 34.50% | 39.50% | 70.00% | 13.50% | 51.00% | N/A* | 27.00% | 24.50% | 63.00% | 50.00% | 72.50% | 65.00% | 74.00% | 63.50% | 77.00% | 90.00% |
xcopa_th_200 | 45.00% | 56.50% | 49.50% | 51.50% | 74.50% | 26.50% | 47.00% | N/A* | 51.50% | 48.50% | 68.50% | 64.00% | 82.00% | 68.00% | 74.00% | 64.00% | 80.00% | 86.00% |
xnli2.0_tha | 33.50% | 34.50% | 39.50% | 31.00% | 47.00% | 21.00% | 43.00% | N/A* | 37.50% | 33.50% | 16.00% | 50.00% | 69.00% | 53.00% | 54.50% | 50.00% | 68.00% | 68.50% |
ONET M3 | 17.85% | 38.86% | 34.11% | 39.36% | 56.15% | 15.58% | 23.92% | N/A* | 21.79% | 19.56% | 21.37% | 37.91% | 49.97% | 55.99% | 57.41% | 52.73% | 40.60% | 63.87% |
ONET M6 | 21.14% | 28.87% | 22.53% | 23.32% | 42.85% | 15.09% | 19.48% | N/A* | 16.96% | 20.67% | 28.64% | 34.44% | 46.29% | 45.53% | 50.23% | 34.79% | 38.49% | 48.56% |
Average Score | 23.83% | 37.27% | 38.40% | 40.33% | 55.87% | 18.06% | 33.56% | N/A* | 27.44% | 23.75% | 37.28% | 43.07% | 60.68% | 52.30% | 52.89% | 50.65% | 56.81% | 68.32% |
*Waiting for accessing TyphoonGPT Instruct Model.
(More benchmark is coming soon)
Benchmark Configuration
- Clearly instruct model to answer by select from possible choices and followed by an explanation.
- Zero shot only
- Tested on Unseen test set only
- Detect a multi-choice answer on (A),(B),(C),(D),(E) at the beginning of the answer (First priority) and at the end of the answer (Second priority)
Licenses
Source Code: License Apache Software License 2.0.
Weight: Research and Commercial uses.
Sponsors
![](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/42d-GioSs4evIdNuMAaPB.png)
Supports
- Official website: https://openthaigpt.aieat.or.th
- Facebook page: https://web.facebook.com/groups/openthaigpt
- A Discord server for discussion and support here
- E-mail: [email protected]
Prompt Format
Prompt format is based on Llama2 with a small modification (Adding "###" to specify the context part)
<s>[INST] <<SYS>
{system_prompt}
<</SYS>>
{human_turn1}###{context_turn1} [/INST]{assistant_turn1}</s><s>{human_turn2}###{context_turn2} [/INST] ...
Practically, when usually used "\n" for a new line so,
<s>[INST] <<SYS>\n{system_prompt}\n<</SYS>>\n\n{human_turn1}###{context_turn1} [/INST]{assistant_turn1}</s><s>{human_turn2}###{context_turn2} [/INST] ...
System prompt:
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
Examples
Single Turn Conversation Example
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
สวัสดีครับ [/INST]
Single Turn Conversation with Context (RAG) Example
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
กรุงเทพมีพื้นที่เท่าไร่###กรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน [/INST]
Multi Turn Conversation Example
First turn
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
สวัสดีครับ [/INST]
Second turn
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
สวัสดีครับ [/INST]สวัสดีค่ะ มีคำถามอะไร ถามได้เลย</s><s>ขอสูตรทำส้มตำหน่อย [/INST]
Third turn
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
สวัสดีครับ [/INST]สวัสดีค่ะ มีคำถามอะไร ถามได้เลย</s><s>ขอสูตรทำส้มตำหน่อย [/INST]ได้เลยค่ะ ส้มตำเป็นเมนูที่ทำง่ายและอร่อย มาเริ่มกันเลยนะคะ</s><s>เริ่มได้เลย [/INST]
Fourth turn
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
สวัสดีครับ [/INST]สวัสดีค่ะ มีคำถามอะไร ถามได้เลย</s><s>ขอสูตรทำส้มตำหน่อย [/INST]ได้เลยค่ะ ส้มตำเป็นเมนูที่ทำง่ายและอร่อย มาเริ่มกันเลยนะคะ</s><s>เริ่มได้เลย [/INST]
ตำไทยเป็นเมนูที่ใครๆ ก็คุ้นเคย ด้วยรสชาติที่กลมกล่อม หวาน เปรี้ยว เค็ม เผ็ด ครบรส วันนี้เราจะมาทำส้มตำด้วยกันค่ะ สิ่งแรกที่ต้องมีคือเครื่องปรุงดังนี้
- มะละกอดิบ 1 ลูก
- กุ้งแห้ง 1/2 ถ้วย
- กระเทียม 3 กลีบ
- พริกขี้หนู 3 เม็ด
- น้ำตาลปี๊บ 1 ช้อนโต๊ะ
- น้ำปลา 2 ช้อนโต๊ะ
- มะนาว 1 ลูก
- งาขาวคั่ว 1/4 ถ้วย
วิธีทำมีดังนี้ค่ะ
1. เริ่มจากล้างมะละกอให้สะอาด แล้วใช้มีดปอกเปลือก เอาไส้ออก หั่นเป็นเส้นบางๆ เตรียมไว้
2. ตำกุ้งแห้งให้ละเอียด แล้วตักขึ้นพักไว้
3. ใช้ครกหินหรือเครื่องปั่น บดพริกขี้หนูกับกระเทียมให้ละเอียด
4. ใส่กุ้งแห้งที่ตำแล้วลงไปผสม ตามด้วยน้ำตาลปี๊บ น้ำปลา มะนาว และเส้นมะละกอ คลุกเคล้าให้เข้ากัน
5. ชิมรสให้ได้รสหวาน เปรี้ยว เค็ม เผ็ด จากนั้นตักขึ้นเสิร์ฟพร้อมผักสด อาทิ กะหล่ำปลี ถั่วงอก แครอท ผักบุ้ง</s><s>ขอบคุณครับ [/INST]
Multi Turn Conversation with Context (RAG) Example
<s>[INST] <<SYS>
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
<</SYS>>
กรุงเทพมีพื้นที่เท่าไร่###กรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน [/INST]
กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม.</s><s>และประชากรล่ะ [/INST]
How to use
vLLM Engine for float16 model
- install VLLM (https://github.com/vllm-project/vllm)
- python -m vllm.entrypoints.api_server --model /path/to/model --tensor-parallel-size num_gpus
- run inference (CURL example)
curl --request POST \
--url http://localhost:8000/generate \
--header "Content-Type: application/json" \
--data '{"prompt": "<s>[INST] <<SYS>>\nYou are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด\n<</SYS>>\n\nอยากลดความอ้วนต้องทำอย่างไร [/INST]","use_beam_search": false, "temperature": 0.1, "max_tokens": 512, "top_p": 0.75, "top_k": 40, "frequency_penalty": 0.3 "stop": "</s>"}'
LlamaCPP Engine for 4 bit model
Authors
- Kobkrit Viriyayudhakorn ([email protected])
- Sumeth Yuenyong ([email protected])
- Thaweewat Rugsujarit ([email protected])
- Jillaphat Jaroenkantasima ([email protected])
- Norapat Buppodom ([email protected])
- Koravich Sangkaew ([email protected])
- Peerawat Rojratchadakorn ([email protected])
- Surapon Nonesung ([email protected])
- Chanon Utupon ([email protected])
- Sadhis Wongprayoon ([email protected])
- Nucharee Thongthungwong ([email protected])
- Chawakorn Phiantham ([email protected])
- Patteera Triamamornwooth ([email protected])
- Nattarika Juntarapaoraya ([email protected])
- Kriangkrai Saetan ([email protected])
- Pitikorn Khlaisamniang ([email protected])
Disclaimer: Provided responses are not guaranteed.