metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: classifier.skops
widget:
- structuredData:
credibleSetConfidence:
- 0.5
- 0.5
- 0.5
distanceFootprintMean:
- 0.9775440692901611
- 0.915132999420166
- 0.9051011204719543
distanceFootprintMeanNeighbourhood:
- 0.9782288074493408
- 0.9157739877700806
- 0.9057350754737854
distanceSentinelFootprint:
- 0.9779183268547058
- 0.9165117740631104
- 0.9065772294998169
distanceSentinelFootprintNeighbourhood:
- 0.9779183268547058
- 0.9165117740631104
- 0.9065772294998169
distanceSentinelTss:
- 0.9779183268547058
- 0.9165117740631104
- 0.9062665700912476
distanceSentinelTssNeighbourhood:
- 0.9798746109008789
- 0.9183452129364014
- 0.9080795049667358
distanceTssMean:
- 0.9775440692901611
- 0.915132999420166
- 0.9047871232032776
distanceTssMeanNeighbourhood:
- 0.9799838066101074
- 0.9174169898033142
- 0.907045304775238
eQtlColocClppMaximum:
- 0
- 0
- 0
eQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
eQtlColocH4Maximum:
- 0
- 0
- 0
eQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
geneCount500kb:
- 4
- 4
- 4
isProteinCoding:
- 1
- 0
- 0
pQtlColocClppMaximum:
- 0
- 0
- 0
pQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
pQtlColocH4Maximum:
- 0
- 0
- 0
pQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
proteinGeneCount500kb:
- 1
- 1
- 1
sQtlColocClppMaximum:
- 0
- 0
- 0
sQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
sQtlColocH4Maximum:
- 0
- 0
- 0
sQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
studyLocusId:
- 0b60eba83ae9773e4908e41b11fb8243
- 0b60eba83ae9773e4908e41b11fb8243
- 0b60eba83ae9773e4908e41b11fb8243
vepMaximum:
- 0
- 0
- 0
vepMaximumNeighbourhood:
- 0
- 0
- 0
vepMean:
- 0
- 0
- 0
vepMeanNeighbourhood:
- 0
- 0
- 0
Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
Intended uses & limitations
[More Information Needed]
Training Procedure
Gradient Boosting Classifier
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
ccp_alpha | 0.0 |
criterion | friedman_mse |
init | |
learning_rate | 0.1 |
loss | log_loss |
max_depth | 5 |
max_features | |
max_leaf_nodes | |
min_impurity_decrease | 0.0 |
min_samples_leaf | 1 |
min_samples_split | 2 |
min_weight_fraction_leaf | 0.0 |
n_estimators | 100 |
n_iter_no_change | |
random_state | 42 |
subsample | 1.0 |
tol | 0.0001 |
validation_fraction | 0.1 |
verbose | 0 |
warm_start | False |
How to Get Started with the Model
To use the model, you can load it using the LocusToGeneModel.load_from_hub
method. This will return a LocusToGeneModel
object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the predict
method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
Citation
https://doi.org/10.1038/s41588-021-00945-5
License
MIT