File size: 24,756 Bytes
1dfa9dc bf6f912 1dfa9dc bf6f912 a8dd5db bf6f912 54249c4 bf6f912 37edc54 bf6f912 a8dd5db bf6f912 a8dd5db bf6f912 2bed3a2 bf6f912 2bed3a2 11bfb79 2bed3a2 a8dd5db 2bed3a2 a8dd5db 2bed3a2 bf6f912 6d2099c bf6f912 a426d2a 37c5181 a426d2a 37c5181 a426d2a 37c5181 a426d2a c255f57 a426d2a bf6f912 73cb2e7 bf6f912 3bbd798 ea73194 3bbd798 a8dd5db bf6f912 7fee240 1fd8118 7fee240 bf6f912 100c576 bf6f912 100c576 7584097 bf6f912 7584097 bf6f912 7584097 bf6f912 7584097 bf6f912 7584097 bf6f912 c13aabe 0f80664 c13aabe 0fe9c69 c13aabe 2e3dbac d272cfd 17353d1 d272cfd bf6f912 61961f9 bf6f912 61961f9 bf6f912 61961f9 bf6f912 52e6b29 bf6f912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
---
pipeline_tag: image-text-to-text
datasets:
- openbmb/RLAIF-V-Dataset
library_name: transformers
language:
- multilingual
tags:
- minicpm-v
- vision
- ocr
- multi-image
- video
- custom_code
---
<h1>A GPT-4o Level MLLM for Single Image, Multi Image and High-FPS Video Understanding on Your Phone</h1>
[GitHub](https://github.com/OpenBMB/MiniCPM-o) | [CookBook](https://github.com/OpenSQZ/MiniCPM-V-CookBook) | [Demo](http://101.126.42.235:30910/)</a>
## MiniCPM-V 4.5
**MiniCPM-V 4.5** is the latest and most capable model in the MiniCPM-V series. The model is built on Qwen3-8B and SigLIP2-400M with a total of 8B parameters. It exhibits a significant performance improvement over previous MiniCPM-V and MiniCPM-o models, and introduces new useful features. Notable features of MiniCPM-V 4.5 include:
- 🔥 **State-of-the-art Vision-Language Capability.**
MiniCPM-V 4.5 achieves an average score of 77.0 on OpenCompass, a comprehensive evaluation of 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o-latest, Gemini-2.0 Pro, and strong open-source models like Qwen2.5-VL 72B** for vision-language capabilities, making it the most performant MLLM under 30B parameters.
- 🎬 **Efficient High-FPS and Long Video Understanding.** Powered by a new unified 3D-Resampler over images and videos, MiniCPM-V 4.5 can now achieve 96x compression rate for video tokens, where 6 448x448 video frames can be jointly compressed into 64 video tokens (normally 1,536 tokens for most MLLMs). This means that the model can perceive significantly more video frames without increasing the LLM inference cost. This brings state-of-the-art high-FPS (up to 10FPS) video understanding and long video understanding capabilities on Video-MME, LVBench, MLVU, MotionBench, FavorBench, etc., efficiently.
- ⚙️ **Controllable Hybrid Fast/Deep Thinking.** MiniCPM-V 4.5 supports both fast thinking for efficient frequent usage with competitive performance, and deep thinking for more complex problem solving. To cover efficiency and performance trade-offs in different user scenarios, this fast/deep thinking mode can be switched in a highly controlled fashion.
- 💪 **Strong OCR, Document Parsing and Others.**
Based on [LLaVA-UHD](https://arxiv.org/pdf/2403.11703) architecture, MiniCPM-V 4.5 can process high-resolution images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), using 4x less visual tokens than most MLLMs. The model achieves **leading performance on OCRBench, surpassing proprietary models such as GPT-4o-latest and Gemini 2.5**. It also achieves state-of-the-art performance for PDF document parsing capability on OmniDocBench among general MLLMs. Based on the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, outperforming GPT-4o-latest on MMHal-Bench, and supports **multilingual capabilities** in more than 30 languages.
- 💫 **Easy Usage.**
MiniCPM-V 4.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/tc-mb/llama.cpp/blob/Support-MiniCPM-V-4.5/docs/multimodal/minicpmv4.5.md) and [ollama](https://github.com/tc-mb/ollama/tree/MIniCPM-V) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-V-4_5-int4), [GGUF](https://huggingface.co/openbmb/MiniCPM-V-4_5-gguf) and [AWQ](https://github.com/tc-mb/AutoAWQ) format quantized models in 16 sizes, (3) [SGLang](https://github.com/tc-mb/sglang/tree/main) and [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [Transformers](https://github.com/tc-mb/transformers/tree/main) and [LLaMA-Factory](./docs/llamafactory_train_and_infer.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), (6) optimized [local iOS app](https://github.com/tc-mb/MiniCPM-o-demo-iOS) on iPhone and iPad, and (7) online web demo on [server](http://101.126.42.235:30910/). See our [Cookbook](https://github.com/OpenSQZ/MiniCPM-V-CookBook) for full usages!
### Key Techniques
<div align="center">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpm-v-4dot5-framework.png" , width=100%>
</div>
- **Architechture: Unified 3D-Resampler for High-density Video Compression.** MiniCPM-V 4.5 introduces a 3D-Resampler that overcomes the performance-efficiency trade-off in video understanding. By grouping and jointly compressing up to 6 consecutive video frames into just 64 tokens (the same token count used for a single image in MiniCPM-V series), MiniCPM-V 4.5 achieves a 96× compression rate for video tokens. This allows the model to process more video frames without additional LLM computational cost, enabling high-FPS video and long video understanding. The architecture supports unified encoding for images, multi-image inputs, and videos, ensuring seamless capability and knowledge transfer.
- **Pre-training: Unified Learning for OCR and Knowledge from Documents.** Existing MLLMs learn OCR capability and knowledge from documents in isolated training approaches. We observe that the essential difference between these two training approaches is the visibility of the text in images. By dynamically corrupting text regions in documents with varying noise levels and asking the model to reconstruct the text, the model learns to adaptively and properly switch between accurate text recognition (when text is visible) and multimodal context-based knowledge reasoning (when text is heavily obscured). This eliminates reliance on error-prone document parsers in knowledge learning from documents, and prevents hallucinations from over-augmented OCR data, resulting in top-tier OCR and multimodal knowledge performance with minimal engineering overhead.
- **Post-training: Hybrid Fast/Deep Thinking with Multimodal RL.** MiniCPM-V 4.5 offers a balanced reasoning experience through two switchable modes: fast thinking for efficient daily use and deep thinking for complex tasks. Using a new hybrid reinforcement learning method, the model jointly optimizes both modes, significantly enhancing fast-mode performance without compromising deep-mode capability. Incorporated with [RLPR](https://github.com/OpenBMB/RLPR) and [RLAIF-V](https://github.com/RLHF-V/RLAIF-V), it generalizes robust reasoning skills from broad multimodal data while effectively reducing hallucinations.
### Evaluation
<div align="center">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/radar_minicpm_v45.png", width=60%>
</div>
<div align="center">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv_4_5_evaluation_result.png" , width=100%>
</div>
### Inference Efficiency
**OpenCompass**
<div align="left">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Avg Score ↑</th>
<th>Total Inference Time ↓</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td nowrap="nowrap" align="left">GLM-4.1V-9B-Thinking</td>
<td>10.3B</td>
<td>76.6</td>
<td>17.5h</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiMo-VL-7B-RL</td>
<td>8.3B</td>
<td>76.4</td>
<td>11h</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-V 4.5</td>
<td>8.7B</td>
<td><b>77.0</td>
<td><b>7.5h</td>
</tr>
</tbody>
</table>
</div>
**Video-MME**
<div align="left">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>Avg Score ↑</th>
<th>Total Inference Time ↓</th>
<th>GPU Mem ↓</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td nowrap="nowrap" align="left">Qwen2.5-VL-7B-Instruct</td>
<td>8.3B</td>
<td>71.6</td>
<td>3h</td>
<td>60G</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GLM-4.1V-9B-Thinking</td>
<td>10.3B</td>
<td><b>73.6</td>
<td>2.63h</td>
<td>32G</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MiniCPM-V 4.5</td>
<td>8.7B</td>
<td>73.5</td>
<td><b>0.26h</td>
<td><b>28G</td>
</tr>
</tbody>
</table>
</div>
Both Video-MME and OpenCompass were evaluated using 8×A100 GPUs for inference. The reported inference time of Video-MME includes full model-side computation, and excludes the external cost of video frame extraction (dependent on specific frame extraction tools) for fair comparison.
### Examples
<div align="center">
<a href="https://www.youtube.com/watch?v=Cn23FujYMMU"><img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/MiniCPM-V%204.5-8.26_img.jpeg", width=70%></a>
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case1.png" alt="en_case1" style="margin-bottom: 5px;">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case2.png" alt="en_case2" style="margin-bottom: 5px;">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/en_case3.jpeg" alt="en_case3" style="margin-bottom: 5px;">
</div>
We deploy MiniCPM-V 4.5 on iPad M4 with [iOS demo](https://github.com/tc-mb/MiniCPM-o-demo-iOS). The demo video is the raw screen recording without editing.
<div align="center">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_en_handwriting.gif" width="45%" style="display: inline-block; margin: 0 10px;"/>
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_en_cot.gif" width="45%" style="display: inline-block; margin: 0 10px;"/>
</div>
<div align="center">
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_cn_handwriting.gif" width="45%" style="display: inline-block; margin: 0 10px;"/>
<img src="https://raw.githubusercontent.com/openbmb/MiniCPM-o/main/assets/minicpmv4_5/v45_cn_travel.gif" width="45%" style="display: inline-block; margin: 0 10px;"/>
</div>
## Framework Support Matrix
<table>
<thead>
<tr>
<th>Category</th>
<th>Framework</th>
<th>Cookbook Link</th>
<th>Upstream PR</th>
<th>Supported since (branch)</th>
<th>Supported since (release)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">Edge (On-device)</td>
<td>Llama.cpp</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/llama.cpp/minicpm-v4_5_llamacpp.md">Llama.cpp Doc</a></td>
<td><a href="https://github.com/ggml-org/llama.cpp/pull/15575">#15575</a> (2025-08-26)</td>
<td>master (2025-08-26)</td>
<td><a href="https://github.com/ggml-org/llama.cpp/releases/tag/b6282">b6282</a></td>
</tr>
<tr>
<td>Ollama</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/ollama/minicpm-v4_5_ollama.md">Ollama Doc</a></td>
<td><a href="https://github.com/ollama/ollama/pull/12078">#12078</a> (2025-08-26)</td>
<td>Merging</td>
<td>Waiting for official release</td>
</tr>
<tr>
<td rowspan="2">Serving (Cloud)</td>
<td>vLLM</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/vllm/minicpm-v4_5_vllm.md">vLLM Doc</a></td>
<td><a href="https://github.com/vllm-project/vllm/pull/23586">#23586</a> (2025-08-26)</td>
<td>main (2025-08-27)</td>
<td>Waiting for official release</td>
</tr>
<tr>
<td>SGLang</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/deployment/sglang/MiniCPM-v4_5_sglang.md">SGLang Doc</a></td>
<td><a href="https://github.com/sgl-project/sglang/pull/9610">#9610</a> (2025-08-26)</td>
<td>Merging</td>
<td>Waiting for official release</td>
</tr>
<tr>
<td>Finetuning</td>
<td>LLaMA-Factory</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/finetune/finetune_llamafactory.md">LLaMA-Factory Doc</a></td>
<td><a href="https://github.com/hiyouga/LLaMA-Factory/pull/9022">#9022</a> (2025-08-26)</td>
<td>main (2025-08-26)</td>
<td>Waiting for official release</td>
</tr>
<tr>
<td rowspan="3">Quantization</td>
<td>GGUF</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/gguf/minicpm-v4_5_gguf_quantize.md">GGUF Doc</a></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BNB</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/bnb/minicpm-v4_5_bnb_quantize.md">BNB Doc</a></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AWQ</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/quantization/awq/minicpm-v4_5_awq_quantize.md">AWQ Doc</a></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Demos</td>
<td>Gradio Demo</td>
<td><a href="https://github.com/OpenSQZ/MiniCPM-V-CookBook/blob/main/demo/web_demo/gradio/README.md">Gradio Demo Doc</a></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
> Note: If you'd like us to prioritize support for another open-source framework, please let us know via this [short form](https://docs.google.com/forms/d/e/1FAIpQLSdyTUrOPBgWqPexs3ORrg47ZcZ1r4vFQaA4ve2iA7L9sMfMWw/viewform).
## Usage
If you wish to enable thinking mode, provide the argument `enable_thinking=True` to the chat function.
#### Chat with Image
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
torch.manual_seed(100)
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, # or openbmb/MiniCPM-o-2_6
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) # or openbmb/MiniCPM-o-2_6
image = Image.open('./assets/minicpmo2_6/show_demo.jpg').convert('RGB')
enable_thinking=False # If `enable_thinking=True`, the thinking mode is enabled.
stream=True # If `stream=True`, the answer is string
# First round chat
question = "What is the landform in the picture?"
msgs = [{'role': 'user', 'content': [image, question]}]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
enable_thinking=enable_thinking,
stream=True
)
generated_text = ""
for new_text in answer:
generated_text += new_text
print(new_text, flush=True, end='')
# Second round chat, pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": [answer]})
msgs.append({"role": "user", "content": ["What should I pay attention to when traveling here?"]})
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
stream=True
)
generated_text = ""
for new_text in answer:
generated_text += new_text
print(new_text, flush=True, end='')
```
You will get the following output:
```shell
# round1
The landform in the picture is karst topography. Karst landscapes are characterized by distinctive, jagged limestone hills or mountains with steep, irregular peaks and deep valleys—exactly what you see here These unique formations result from the dissolution of soluble rocks like limestone over millions of years through water erosion.
This scene closely resembles the famous karst landscape of Guilin and Yangshuo in China’s Guangxi Province. The area features dramatic, pointed limestone peaks rising dramatically above serene rivers and lush green forests, creating a breathtaking and iconic natural beauty that attracts millions of visitors each year for its picturesque views.
# round2
When traveling to a karst landscape like this, here are some important tips:
1. Wear comfortable shoes: The terrain can be uneven and hilly.
2. Bring water and snacks for energy during hikes or boat rides.
3. Protect yourself from the sun with sunscreen, hats, and sunglasses—especially since you’ll likely spend time outdoors exploring scenic spots.
4. Respect local customs and nature regulations by not littering or disturbing wildlife.
By following these guidelines, you'll have a safe and enjoyable trip while appreciating the stunning natural beauty of places such as Guilin’s karst mountains.
```
#### Chat with Video
```python
## The 3d-resampler compresses multiple frames into 64 tokens by introducing temporal_ids.
# To achieve this, you need to organize your video data into two corresponding sequences:
# frames: List[Image]
# temporal_ids: List[List[Int]].
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu # pip install decord
from scipy.spatial import cKDTree
import numpy as np
import math
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True, # or openbmb/MiniCPM-o-2_6
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True) # or openbmb/MiniCPM-o-2_6
MAX_NUM_FRAMES=180 # Indicates the maximum number of frames received after the videos are packed. The actual maximum number of valid frames is MAX_NUM_FRAMES * MAX_NUM_PACKING.
MAX_NUM_PACKING=3 # indicates the maximum packing number of video frames. valid range: 1-6
TIME_SCALE = 0.1
def map_to_nearest_scale(values, scale):
tree = cKDTree(np.asarray(scale)[:, None])
_, indices = tree.query(np.asarray(values)[:, None])
return np.asarray(scale)[indices]
def group_array(arr, size):
return [arr[i:i+size] for i in range(0, len(arr), size)]
def encode_video(video_path, choose_fps=3, force_packing=None):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
fps = vr.get_avg_fps()
video_duration = len(vr) / fps
if choose_fps * int(video_duration) <= MAX_NUM_FRAMES:
packing_nums = 1
choose_frames = round(min(choose_fps, round(fps)) * min(MAX_NUM_FRAMES, video_duration))
else:
packing_nums = math.ceil(video_duration * choose_fps / MAX_NUM_FRAMES)
if packing_nums <= MAX_NUM_PACKING:
choose_frames = round(video_duration * choose_fps)
else:
choose_frames = round(MAX_NUM_FRAMES * MAX_NUM_PACKING)
packing_nums = MAX_NUM_PACKING
frame_idx = [i for i in range(0, len(vr))]
frame_idx = np.array(uniform_sample(frame_idx, choose_frames))
if force_packing:
packing_nums = min(force_packing, MAX_NUM_PACKING)
print(video_path, ' duration:', video_duration)
print(f'get video frames={len(frame_idx)}, packing_nums={packing_nums}')
frames = vr.get_batch(frame_idx).asnumpy()
frame_idx_ts = frame_idx / fps
scale = np.arange(0, video_duration, TIME_SCALE)
frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / TIME_SCALE
frame_ts_id = frame_ts_id.astype(np.int32)
assert len(frames) == len(frame_ts_id)
frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames]
frame_ts_id_group = group_array(frame_ts_id, packing_nums)
return frames, frame_ts_id_group
video_path="video_test.mp4"
fps = 5 # fps for video
force_packing = None # You can set force_packing to ensure that 3D-Resampler packing is forcibly enabled; otherwise, encode_video will dynamically set the packing quantity based on the duration.
frames, frame_ts_id_group = encode_video(video_path, fps, force_packing=force_packing)
question = "Describe the video"
msgs = [
{'role': 'user', 'content': frames + [question]},
]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
use_image_id=False, # ensure use_image_id=False when video inference
max_slice_nums=1,
temporal_ids=frame_ts_id_group
)
print(answer)
```
#### Chat with multiple images
<details>
<summary> Click to show Python code running MiniCPM-V 4.5 with multiple images input. </summary>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True)
image1 = Image.open('image1.jpg').convert('RGB')
image2 = Image.open('image2.jpg').convert('RGB')
question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.'
msgs = [{'role': 'user', 'content': [image1, image2, question]}]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
#### In-context few-shot learning
<details>
<summary> Click to view Python code running MiniCPM-V 4.5 with few-shot input. </summary>
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16)
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-4_5', trust_remote_code=True)
question = "production date"
image1 = Image.open('example1.jpg').convert('RGB')
answer1 = "2023.08.04"
image2 = Image.open('example2.jpg').convert('RGB')
answer2 = "2007.04.24"
image_test = Image.open('test.jpg').convert('RGB')
msgs = [
{'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]},
{'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]},
{'role': 'user', 'content': [image_test, question]}
]
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer
)
print(answer)
```
</details>
## License
#### Model License
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM-o/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-V 4.5 weights are also available for free commercial use.
#### Statement
* As an LMM, MiniCPM-V 4.5 generates contents by learning a large amount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V 4.5 does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
## Key Techniques and Other Multimodal Projects
👏 Welcome to explore key techniques of MiniCPM-V 4.5 and other multimodal projects of our team:
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLPR](https://github.com/OpenBMB/RLPR) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
## Citation
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
```bib
@article{yao2024minicpm,
title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others},
journal={Nat Commun 16, 5509 (2025)},
year={2025}
}
``` |