File size: 11,732 Bytes
1dfa9dc dacabb6 1dfa9dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
from functools import partial
from itertools import chain
from typing import Optional, Tuple, List
import numpy as np
import torch
from torch import nn
from torch.nn.init import trunc_normal_
from transformers.integrations import is_deepspeed_zero3_enabled
def get_2d_sincos_pos_embed(embed_dim, image_size):
"""
image_size: image_size or (image_height, image_width)
return:
pos_embed: [image_height, image_width, embed_dim]
"""
if isinstance(image_size, int):
grid_h_size, grid_w_size = image_size, image_size
else:
grid_h_size, grid_w_size = image_size[0], image_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (H, W)
out: (H, W, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_temporal_size(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class Resampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
given learnable queries and 2d sincos pos_emb
Outputs:
A tensor with the shape of (batch_size, num_queries, embed_dim)
"""
def __init__(
self,
num_queries,
embed_dim,
num_heads,
kv_dim=None,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
adaptive=False,
max_size=(70, 70),
max_temporal_size=72000,
batch_infer=False
):
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.adaptive = adaptive
self.max_size = max_size
self.max_temporal_size = max_temporal_size
self.batch_infer = batch_infer
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
trunc_normal_(self.query, std=.02)
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
else:
self.kv_proj = nn.Identity()
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.ln_post = norm_layer(embed_dim)
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
self._set_2d_pos_cache(self.max_size)
self._set_temporal_pos_cache(self.max_temporal_size)
self.apply(self._init_weights)
def _set_2d_pos_cache(self, max_size, device='cpu'):
if is_deepspeed_zero3_enabled():
device='cuda'
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
self.register_buffer("pos_embed", pos_embed, persistent=False)
def _adjust_pos_cache(self, tgt_sizes, device):
max_h = torch.max(tgt_sizes[:, 0])
max_w = torch.max(tgt_sizes[:, 1])
if max_h > self.max_size[0] or max_w > self.max_size[1]:
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
self._set_2d_pos_cache(self.max_size, device)
def _set_temporal_pos_cache(self, max_temporal_size, device='cpu'):
temporal_size = np.arange(max_temporal_size, dtype=np.float32)
pos_embed = torch.from_numpy(get_1d_sincos_pos_embed_from_temporal_size(self.embed_dim, temporal_size)).float().to(device)
self.register_buffer("temporal_pos_embed", pos_embed, persistent=False)
def _adjust_temporal_pos_cache(self, max_temporal_size, device):
if max_temporal_size > self.max_temporal_size:
self.max_temporal_size = max_temporal_size
self._set_temporal_pos_cache(self.max_temporal_size, device)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _initialize_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x, tgt_sizes=None, temporal_ids=None):
assert x.shape[0] == tgt_sizes.shape[0]
bs = x.shape[0]
device = x.device
dtype = x.dtype
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
self._adjust_pos_cache(tgt_sizes, device=device)
temporal_pos_emb = False
temporal_ids_flatten = None
if temporal_ids is not None:
# example: [[-1], [-1], [2, 6, 9]]
temporal_ids_flatten = list(chain.from_iterable(temporal_ids))
max_temporal_size = max(temporal_ids_flatten) + 1
if max_temporal_size > -1:
temporal_pos_emb = True
if max_temporal_size > self.max_temporal_size:
self._adjust_temporal_pos_cache(max_temporal_size, device)
max_patch_len = torch.max(patch_len)
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
pos_embed = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed = torch.nn.utils.rnn.pad_sequence(
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
x = self.kv_proj(x) # B * L * D
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
q = self.ln_q(self.query) # Q * D
pos_embed_2d = []
pos_embed_temporal = []
for i in range(bs):
tgt_h, tgt_w = tgt_sizes[i]
if temporal_pos_emb:
if temporal_ids_flatten[i] == -1:
pos_embed_temporal.append(torch.zeros(self.embed_dim, dtype=dtype, device=device))
else:
pos_embed_temporal.append(self.temporal_pos_embed[temporal_ids_flatten[i]].to(dtype)) # D
pos_embed_2d.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
key_padding_mask[i, patch_len[i]:] = True
pos_embed_2d = torch.nn.utils.rnn.pad_sequence(
pos_embed_2d, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
v = x
k = x + pos_embed_2d
if self.batch_infer:
out = self.batch_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
else: # save gpu memory
out = self.foreach_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
# out: Q * B * D
x = out.permute(1, 0, 2) # B * Q * D
x = self.ln_post(x)
x = x @ self.proj
return x
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
def batch_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
bs = k.shape[0]
if pos_embed_temporal:
# temporal 维度折叠
# 时序 embedding
k += torch.stack(pos_embed_temporal, dim=0)
bs = len(temporal_ids)
merge_k = []
merge_v = []
merge_key_padding_mask = []
start = 0
for tp in temporal_ids:
end = start + len(tp)
# # L * (end-start) * D -> (end-start) * L * D -> 1 * L*(end-start) * D
merge_k.append(k[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
merge_v.append(v[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
merge_key_padding_mask.append(key_padding_mask[start: end, :].reshape(-1, 1))
start = end
k = torch.nn.utils.rnn.pad_sequence(merge_k, batch_first=True, padding_value=0.0).permute(1, 0, 2) # L*(end-start)
v = torch.nn.utils.rnn.pad_sequence(merge_v, batch_first=True, padding_value=0.0).permute(1, 0, 2) # L*(end-start)
key_padding_mask = torch.nn.utils.rnn.pad_sequence(merge_key_padding_mask, batch_first=True, padding_value=True).squeeze(-1)
out = self.attn(
self._repeat(q, bs), # Q * B * D
k, # L * B * D + L * B * D
v,
key_padding_mask=key_padding_mask)[0]
return out
def foreach_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
bs = k.shape[0]
if pos_embed_temporal:
k += torch.stack(pos_embed_temporal, dim=0)
# bs = len(temporal_ids)
out_list = []
start = 0
for tp in temporal_ids:
end = start + len(tp)
# 处理每个序列而不padding
curr_k = k[:, start:end, :].reshape(-1, self.embed_dim)
curr_v = v[:, start:end, :].reshape(-1, self.embed_dim)
curr_key_padding_mask = key_padding_mask[start: end, :].reshape(-1)
curr_out = self.attn(
q,
curr_k,
curr_v,
key_padding_mask=curr_key_padding_mask,
)[0]
out_list.append(curr_out)
start = end
# 合并所有序列的结果
out = torch.stack(out_list, dim=1)
else:
out = self.attn(
self._repeat(q, bs), # Q * B * D
k, # L * B * D + L * B * D
v,
key_padding_mask=key_padding_mask)[0]
return out
|