File size: 11,732 Bytes
1dfa9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacabb6
 
 
 
 
 
 
 
 
1dfa9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from functools import partial
from itertools import chain
from typing import Optional, Tuple, List
import numpy as np

import torch
from torch import nn
from torch.nn.init import trunc_normal_

from transformers.integrations import is_deepspeed_zero3_enabled

def get_2d_sincos_pos_embed(embed_dim, image_size):
    """
    image_size: image_size or (image_height, image_width)
    return:
    pos_embed: [image_height, image_width, embed_dim]
    """
    if isinstance(image_size, int):
        grid_h_size, grid_w_size = image_size, image_size
    else:
        grid_h_size, grid_w_size = image_size[0], image_size[1]

    grid_h = np.arange(grid_h_size, dtype=np.float32)
    grid_w = np.arange(grid_w_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0])  # (H, W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1])  # (H, W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=-1)  # (H, W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (H, W)
    out: (H, W, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    out = np.einsum('hw,d->hwd', pos, omega)  # (H, W, D/2), outer product

    emb_sin = np.sin(out)  # (H, W, D/2)
    emb_cos = np.cos(out)  # (H, W, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=-1)  # (H, W, D)
    return emb

def get_1d_sincos_pos_embed_from_temporal_size(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class Resampler(nn.Module):
    """
    A 2D perceiver-resampler network with one cross attention layers by
       given learnable queries and 2d sincos pos_emb
    Outputs:
        A tensor with the shape of (batch_size, num_queries, embed_dim)
    """

    def __init__(
            self,
            num_queries,
            embed_dim,
            num_heads,
            kv_dim=None,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            adaptive=False,
            max_size=(70, 70),
            max_temporal_size=72000,
            batch_infer=False 
    ):
        super().__init__()
        self.num_queries = num_queries
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.adaptive = adaptive
        self.max_size = max_size
        self.max_temporal_size = max_temporal_size
        self.batch_infer = batch_infer

        self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
        trunc_normal_(self.query, std=.02)

        if kv_dim is not None and kv_dim != embed_dim:
            self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
        else:
            self.kv_proj = nn.Identity()

        self.attn = nn.MultiheadAttention(embed_dim, num_heads)
        self.ln_q = norm_layer(embed_dim)
        self.ln_kv = norm_layer(embed_dim)

        self.ln_post = norm_layer(embed_dim)
        self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))

        self._set_2d_pos_cache(self.max_size)
        self._set_temporal_pos_cache(self.max_temporal_size)
        self.apply(self._init_weights)

    def _set_2d_pos_cache(self, max_size, device='cpu'):
        if is_deepspeed_zero3_enabled():
            device='cuda'
        pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
        self.register_buffer("pos_embed", pos_embed, persistent=False)

    def _adjust_pos_cache(self, tgt_sizes, device):
        max_h = torch.max(tgt_sizes[:, 0])
        max_w = torch.max(tgt_sizes[:, 1])
        if max_h > self.max_size[0] or max_w > self.max_size[1]:
            self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
            self._set_2d_pos_cache(self.max_size, device)
    
    def _set_temporal_pos_cache(self, max_temporal_size, device='cpu'):
        temporal_size = np.arange(max_temporal_size, dtype=np.float32)
        pos_embed = torch.from_numpy(get_1d_sincos_pos_embed_from_temporal_size(self.embed_dim, temporal_size)).float().to(device)
        self.register_buffer("temporal_pos_embed", pos_embed, persistent=False)
    
    def _adjust_temporal_pos_cache(self, max_temporal_size, device):
        if max_temporal_size > self.max_temporal_size:
            self.max_temporal_size = max_temporal_size
            self._set_temporal_pos_cache(self.max_temporal_size, device)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def _initialize_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, tgt_sizes=None, temporal_ids=None):
        assert x.shape[0] == tgt_sizes.shape[0]
        bs = x.shape[0]

        device = x.device
        dtype = x.dtype

        patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]

        self._adjust_pos_cache(tgt_sizes, device=device)

        temporal_pos_emb = False
        temporal_ids_flatten = None
        if temporal_ids is not None:
            # example: [[-1], [-1], [2, 6, 9]]
            temporal_ids_flatten = list(chain.from_iterable(temporal_ids))
            max_temporal_size = max(temporal_ids_flatten) + 1
            if max_temporal_size > -1:
                temporal_pos_emb = True
            if max_temporal_size > self.max_temporal_size:
                self._adjust_temporal_pos_cache(max_temporal_size, device)


        max_patch_len = torch.max(patch_len)
        key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)

        pos_embed = []
        for i in range(bs):
            tgt_h, tgt_w = tgt_sizes[i]
            pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype))  # patches * D
            key_padding_mask[i, patch_len[i]:] = True

        pos_embed = torch.nn.utils.rnn.pad_sequence(
            pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # BLD => L * B * D

        x = self.kv_proj(x)  # B * L * D
        x = self.ln_kv(x).permute(1, 0, 2)  # L * B * D

        q = self.ln_q(self.query)  # Q * D

        pos_embed_2d = []
        pos_embed_temporal = []
        for i in range(bs):
            tgt_h, tgt_w = tgt_sizes[i]
            if temporal_pos_emb:
                if temporal_ids_flatten[i] == -1:
                    pos_embed_temporal.append(torch.zeros(self.embed_dim, dtype=dtype, device=device))
                else:
                    pos_embed_temporal.append(self.temporal_pos_embed[temporal_ids_flatten[i]].to(dtype)) # D

            pos_embed_2d.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype))  # patches * D
            key_padding_mask[i, patch_len[i]:] = True

        pos_embed_2d = torch.nn.utils.rnn.pad_sequence(
            pos_embed_2d, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # BLD => L * B * D
        
        v = x
        k = x + pos_embed_2d
        
        if self.batch_infer:
            out = self.batch_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
        else: # save gpu memory
            out = self.foreach_attn_forward(q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask)
        
        #  out: Q * B * D
        x = out.permute(1, 0, 2)  # B * Q * D

        x = self.ln_post(x)
        x = x @ self.proj
        return x


    def _repeat(self, query, N: int):
        return query.unsqueeze(1).repeat(1, N, 1)
    

    def batch_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
        bs = k.shape[0]

        if pos_embed_temporal:
            # temporal 维度折叠
            # 时序 embedding
            k += torch.stack(pos_embed_temporal, dim=0)
            bs = len(temporal_ids)
            merge_k = []
            merge_v = []
            merge_key_padding_mask = []

            start = 0
            for tp in temporal_ids:
                end = start + len(tp)
                # # L * (end-start) * D -> (end-start) * L * D -> 1 * L*(end-start) * D
                merge_k.append(k[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
                merge_v.append(v[:, start: end, :].permute(1, 0, 2).reshape(-1, self.embed_dim))
                merge_key_padding_mask.append(key_padding_mask[start: end, :].reshape(-1, 1))

                start = end
                            
            k = torch.nn.utils.rnn.pad_sequence(merge_k, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # L*(end-start)
            v = torch.nn.utils.rnn.pad_sequence(merge_v, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # L*(end-start)
            key_padding_mask = torch.nn.utils.rnn.pad_sequence(merge_key_padding_mask, batch_first=True, padding_value=True).squeeze(-1)

        out = self.attn(
            self._repeat(q, bs),  # Q * B * D
            k,  # L * B * D +  L * B * D
            v,
            key_padding_mask=key_padding_mask)[0]

        return out


    def foreach_attn_forward(self, q, k, v, pos_embed_temporal, temporal_ids, key_padding_mask):
        bs = k.shape[0]

        if pos_embed_temporal:
            k += torch.stack(pos_embed_temporal, dim=0)
            # bs = len(temporal_ids)
            out_list = []

            start = 0
            for tp in temporal_ids:
                end = start + len(tp)
                # 处理每个序列而不padding
                curr_k = k[:, start:end, :].reshape(-1, self.embed_dim)
                curr_v = v[:, start:end, :].reshape(-1, self.embed_dim)
                curr_key_padding_mask = key_padding_mask[start: end, :].reshape(-1)
                curr_out = self.attn(
                    q,
                    curr_k,
                    curr_v,
                    key_padding_mask=curr_key_padding_mask,
                )[0]

                out_list.append(curr_out)
                start = end

            # 合并所有序列的结果
            out = torch.stack(out_list, dim=1)

        else:
            out = self.attn(
                self._repeat(q, bs),  # Q * B * D
                k,  # L * B * D +  L * B * D
                v,
                key_padding_mask=key_padding_mask)[0]
            
        return out