metadata
language:
- en
- ko
license: cc-by-nc-4.0
datasets:
- kyujinpy/KOR-gugugu-platypus-set
base_model:
- yanolja/KoSOLAR-10.7B-v0.2
pipeline_tag: text-generation
KoSOLAR-v0.2-gugutypus-10.7B

Model Details
Model Developers
- DongGeon Lee (oneonlee)
Model Architecture
- KoSOLAR-v0.2-gugutypus-10.7B is a instruction fine-tuned auto-regressive language model, based on the SOLAR transformer architecture.
Base Model
Training Dataset
Environments
- Google Colab (Pro)
- GPU : NVIDIA A100 40GB
Model comparisons
- Ko-LLM leaderboard (YYYY/MM/DD) [link]
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
KoSOLAR-gugutypus | NaN | NaN | NaN | NaN | NaN | NaN |
- (ENG) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
HellaSwag | 1 | none | 0 | acc | 0.6075 | ± | 0.0049 |
HellaSwag | 1 | none | 5 | acc | ± | ||
BoolQ | 2 | none | 0 | acc | 0.8737 | ± | 0.0058 |
BoolQ | 2 | none | 5 | acc | ± | ||
COPA | 1 | none | 0 | acc | 0.8300 | ± | 0.0378 |
COPA | 1 | none | 5 | acc | ± | ||
MMLU | N/A | none | 0 | acc | 0.5826 | ± | 0.1432 |
MMLU | N/A | none | 5 | acc | ± |
- (KOR) AI-Harness evaluation [link]
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
KoBEST-HellaSwag | none | 0 | acc | ± | |||
KoBEST-HellaSwag | none | 5 | acc | ± | |||
KoBEST-BoolQ | none | 0 | acc | ± | |||
KoBEST-BoolQ | none | 5 | acc | ± | |||
KoBEST-COPA | none | 0 | acc | ± | |||
KoBEST-COPA | none | 5 | acc | ± | |||
KoBEST-SentiNeg | none | 0 | acc | ± | |||
KoBEST-SentiNeg | none | 5 | acc | ± | |||
KoBEST-MMLU | none | 0 | acc | ± | |||
KoBEST-MMLU | none | 5 | acc | ± |
Implementation Code
### KoSOLAR-gugutypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "oneonlee/KoSOLAR-v0.2-gugutypus-10.7B"
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(repo)