metadata
library_name: peft
license: other
base_model: NousResearch/Meta-Llama-3-8B
tags:
- axolotl
- generated_from_trainer
datasets:
- oguz7/printer2
model-index:
- name: printer2llama3.1
results: []
See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B
bf16: auto
dataset_prepared_path: null
datasets:
- path: oguz7/printer2
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: oguz7/printer2llama3.1
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 4096
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
printer2llama3.1
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the oguz7/printer2 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0