|
# Deep Incubation |
|
|
|
This repository contains the pre-trained models for [Deep Incubation](https://arxiv.org/abs/2212.04129). |
|
|
|
> **Title**:  [**Deep Incubation: Training Large Models by Divide-and-Conquering**](https://arxiv.org/abs/2212.04129) |
|
> **Authors**: [Zanlin Ni](https://scholar.google.com/citations?user=Yibz_asAAAAJ&hl=en&oi=ao), [Yulin Wang](https://scholar.google.com/citations?hl=en&user=gBP38gcAAAAJ), Jiangwei Yu, [Haojun Jiang](https://scholar.google.com/citations?hl=en&user=ULmStp8AAAAJ), [Yue Cao](https://scholar.google.com/citations?hl=en&user=iRUO1ckAAAAJ), [Gao Huang](https://scholar.google.com/citations?user=-P9LwcgAAAAJ&hl=en&oi=ao) (Corresponding Author) |
|
> **Institute**: Tsinghua University and Beijing Academy of Artificial Intelligence (BAAI) |
|
> **Publish**: *arXiv preprint ([arXiv 2212.04129](https://arxiv.org/abs/2212.04129))* |
|
> **Contact**: nzl22 at mails dot tsinghua dot edu dot cn |
|
|
|
## Models |
|
|
|
| model | image size | #param. | top-1 acc. | checkpoint | |
|
| ----- | ---------- | ------- | ---------- | ----------------------------------------------------------------------------------------------------------- | |
|
| ViT-B | 224x224 | 87M | 82.4% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/vit_base.pth) | |
|
| ViT-B | 384x384 | 87M | 84.2% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/high_res/vit_base.pth) | |
|
| ViT-L | 224x224 | 304M | 83.9% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/vit_large.pth) | |
|
| ViT-L | 384x384 | 304M | 85.3% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/high_res/vit_large.pth) | |
|
| ViT-H | 224x224 | 632M | 84.3% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/vit_huge.pth) | |
|
| ViT-H | 392x392 | 632M | 85.6% | [π€ HF link](https://huggingface.co/nzl-thu/Model-Assembling/blob/main/pretrained/high_res/vit_huge.pth) | |
|
|
|
## Data Preparation |
|
|
|
- The ImageNet dataset should be prepared as follows: |
|
|
|
``` |
|
data |
|
βββ train |
|
β βββ folder 1 (class 1) |
|
β βββ folder 2 (class 1) |
|
β βββ ... |
|
βββ val |
|
β βββ folder 1 (class 1) |
|
β βββ folder 2 (class 1) |
|
β βββ ... |
|
|
|
``` |
|
|
|
## Citation |
|
|
|
If you find our work helpful, please **starπ** this repo and **citeπ** our paper. Thanks for your support! |
|
|
|
``` |
|
@article{Ni2022Incub, |
|
title={Deep Incubation: Training Large Models by Divide-and-Conquering}, |
|
author={Ni, Zanlin and Wang, Yulin and Yu, Jiangwei and Jiang, Haojun and Cao, Yue and Huang, Gao}, |
|
journal={arXiv preprint arXiv:2212.04129}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
Our implementation is mainly based on [deit](https://github.com/facebookresearch/deit). We thank to their clean codebase. |
|
|
|
## Contact |
|
|
|
If you have any questions or concerns, please send mail to [[email protected]](mailto:[email protected]). |
|
|