See axolotl config
axolotl version: 0.6.0
base_model: meta-llama/Meta-Llama-3.1-8B
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: llama3
datasets:
- path: penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
type: chat_template
split: train[:2%]
field_messages: conversation
message_field_role: role
message_field_content: content
- path: penfever/allenai_WildChat-1M-Full-Qwen_Qwen2-7B-Instruct
type: chat_template
split: train[:2%]
field_messages: conversation
message_field_role: role
message_field_content: content
- path: penfever/allenai_WildChat-1M-Full-THUDM_glm-4-9b-chat
type: chat_template
split: train[:2%]
field_messages: conversation
message_field_role: role
message_field_content: content
- path: penfever/allenai_WildChat-1M-Full-teknium_OpenHermes-2.5-Mistral-7B
type: chat_template
split: train[:2%]
field_messages: conversation
message_field_role: role
message_field_content: content
- path: penfever/allenai_WildChat-1M-Full-google_gemma-2-9b-it
type: chat_template
split: train[:2%]
field_messages: conversation
message_field_role: role
message_field_content: content
dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-100k-8B-5blend
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/llama-3-8b-wildchat-100k-8B-5blend
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-WildChat-100k-8B-5blend
wandb_log_model:
hub_model_id: penfever/Llama-3-8B-WildChat-100k-8B-5blend
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
Llama-3-8B-WildChat-100k-8B-5blend
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct, the penfever/allenai_WildChat-1M-Full-Qwen_Qwen2-7B-Instruct, the penfever/allenai_WildChat-1M-Full-THUDM_glm-4-9b-chat, the penfever/allenai_WildChat-1M-Full-teknium_OpenHermes-2.5-Mistral-7B and the penfever/allenai_WildChat-1M-Full-google_gemma-2-9b-it datasets. It achieves the following results on the evaluation set:
- Loss: 3.9375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.4756 | 0.9973 | 320 | 3.9375 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nyu-dice-lab/Llama-3-8B-WildChat-100k-8B-5blend
Base model
meta-llama/Llama-3.1-8BDatasets used to train nyu-dice-lab/Llama-3-8B-WildChat-100k-8B-5blend
Collection including nyu-dice-lab/Llama-3-8B-WildChat-100k-8B-5blend
Collection
All model checkpoints associated with the WildChat-50m paper, including Re-Wild, DPO, and TULU3.
•
58 items
•
Updated