textclassifier_requesttype_v1AndAugV1_distilbert-base-uncased

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6438
  • Accuracy: 0.8803

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7146 1.0 15 1.0728 0.7350
0.8748 2.0 30 0.7251 0.8034
0.5424 3.0 45 0.6366 0.8376
0.3699 4.0 60 0.5454 0.8718
0.295 5.0 75 0.5586 0.8291
0.2477 6.0 90 0.6698 0.8547
0.2415 7.0 105 0.5848 0.8291
0.2208 8.0 120 0.5794 0.8462
0.1951 9.0 135 0.5879 0.8889
0.2019 10.0 150 0.6363 0.8376
0.1861 11.0 165 0.6340 0.8376
0.1717 12.0 180 0.6194 0.8462
0.1742 13.0 195 0.6236 0.8889
0.1518 14.0 210 0.6250 0.8462
0.1607 15.0 225 0.6214 0.8803
0.1561 16.0 240 0.6374 0.8803
0.1408 17.0 255 0.6549 0.8462
0.1427 18.0 270 0.6475 0.8803
0.1318 19.0 285 0.6437 0.8803
0.1383 20.0 300 0.6438 0.8803

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
29
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nsugianto/textclassifier_requesttype_v1AndAugV1_distilbert-base-uncased

Finetuned
(7323)
this model