|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct |
|
library_name: transformers |
|
license: llama3.1 |
|
pipeline_tag: text-generation |
|
tags: |
|
- facebook |
|
- meta |
|
- pytorch |
|
- pruning |
|
- llama |
|
- llama-3 |
|
--- |
|
|
|
## Model Information |
|
The Llama 3.1 text only 41B model is pruned from Llama 3.1 instruction finetuned text only 70B |
|
using [FLAP method](arxiv.org/abs/2312.11983). |
|
|
|
> TL;DR No under maintenance. Bad performance, no value. Side product of experiment. |
|
|
|
Hyper parameters used for pruning: |
|
``` |
|
metrics: WIFV |
|
structure: AL-AM |
|
pruning_ratio: 0.5 |
|
``` |
|
|
|
## Limitation |
|
This `llama3.1-41B-raw` model gives unstable output. |
|
A finetune on instruction dataset is recommended. |
|
|
|
The model is not supported by any library at the moment |
|
due to its unconsistent shape between layers after pruning. |
|
|
|
## Usage |
|
The model is not supported by any library at the moment, |
|
following is a workaround. |
|
```python |
|
from functools import reduce |
|
def get_module_by_name(module, access_string): |
|
names = access_string.split(sep='.') |
|
return reduce(getattr, names, module) |
|
|
|
import json |
|
from safetensors import safe_open |
|
from transformers import LlamaForCausalLM |
|
class MyLlamaForCausalLM(LlamaForCausalLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
with open(os.path.join( |
|
config._name_or_path, |
|
"model.safetensors.index.json")) as f: |
|
weight_map = json.load(f) |
|
weight_map = weight_map["weight_map"] |
|
for name, path in weight_map.items(): |
|
module_name = name.replace('.weight', '') |
|
if '.bias' in module_name: |
|
continue |
|
layer = get_module_by_name(self, module_name) |
|
with safe_open( |
|
os.path.join( |
|
config._name_or_path, |
|
path), framework="pt") as f: |
|
tensor = f.get_tensor(name) |
|
if 'mlp.' in name or 'attn.' in name: |
|
if tensor.shape != (layer.out_features, layer.in_features): |
|
layer = layer.__init__( |
|
tensor.shape[1], |
|
tensor.shape[0], |
|
bias=layer.bias, |
|
dtype=layer.weight.dtype, |
|
device=layer.weight.device) |
|
for name, path in weight_map.items(): |
|
if 'attn.' in name: |
|
module = get_module_by_name( |
|
self, |
|
'.'.join(name.split('.')[:-2])) |
|
module.num_heads = module.q_proj.out_features // module.head_dim |
|
module.num_key_value_heads = module.num_heads |
|
module.num_key_value_groups = module.num_heads // module.num_key_value_heads |
|
|
|
|
|
model = MyLlamaForCausalLM.from_pretrained( |
|
"npc0/llama3.1-41B-raw", |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"FLAP/llm_weights/flap_p0.5_WIFV_ALAM_llama_70b") |
|
model = model.eval() |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, |
|
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, |
|
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, |
|
] |
|
|
|
model_inputs = tokenizer.apply_chat_template(messages, |
|
return_tensors="pt").to(model.device) |
|
generated_ids = model.generate(model_inputs, max_new_tokens=128) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |