|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: final_bart_prepro_fix |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# final_bart_prepro_fix |
|
|
|
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6100 |
|
- Rouge1: 35.5593 |
|
- Rouge2: 13.0497 |
|
- Rougel: 23.5672 |
|
- Bleu1: 29.5206 |
|
- Bleu2: 17.3914 |
|
- Bleu3: 10.5577 |
|
- Bleu4: 6.1502 |
|
- Rdass: 0.6449 |
|
- Gen Len: 49.7389 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Rdass | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:------:|:-------:| |
|
| 2.1622 | 1.51 | 1000 | 2.6687 | 35.4366 | 12.8631 | 23.1588 | 29.4018 | 17.2004 | 10.3744 | 6.052 | 0.6379 | 49.4266 | |
|
| 2.0114 | 3.02 | 2000 | 2.6090 | 35.1436 | 13.0347 | 23.4682 | 28.8917 | 17.0965 | 10.1873 | 5.896 | 0.6389 | 46.1096 | |
|
| 1.8758 | 4.53 | 3000 | 2.6100 | 35.5593 | 13.0497 | 23.5672 | 29.5206 | 17.3914 | 10.5577 | 6.1502 | 0.6449 | 49.7389 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|