Text Generation
MLX
Safetensors
Transformers
English
qwen3
shining-valiant
shining-valiant-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-1.7b
1.7b
reasoning
code
code-reasoning
science
science-reasoning
physics
biology
chemistry
earth-science
astronomy
machine-learning
artificial-intelligence
compsci
computer-science
information-theory
ML-Ops
math
cuda
deep-learning
agentic
LLM
neuromorphic
self-improvement
complex-systems
cognition
linguistics
philosophy
logic
epistemology
simulation
game-theory
knowledge-management
creativity
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
text-generation-inference
8-bit precision
metadata
language:
- en
library_name: mlx
pipeline_tag: text-generation
tags:
- shining-valiant
- shining-valiant-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-1.7b
- 1.7b
- reasoning
- code
- code-reasoning
- science
- science-reasoning
- physics
- biology
- chemistry
- earth-science
- astronomy
- machine-learning
- artificial-intelligence
- compsci
- computer-science
- information-theory
- ML-Ops
- math
- cuda
- deep-learning
- transformers
- agentic
- LLM
- neuromorphic
- self-improvement
- complex-systems
- cognition
- linguistics
- philosophy
- logic
- epistemology
- simulation
- game-theory
- knowledge-management
- creativity
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
- mlx
base_model: ValiantLabs/Qwen3-1.7B-ShiningValiant3
datasets:
- sequelbox/Celestia3-DeepSeek-R1-0528
- sequelbox/Mitakihara-DeepSeek-R1-0528
- sequelbox/Raiden-DeepSeek-R1
license: apache-2.0
Qwen3-1.7B-ShiningValiant3-q8-mlx
This model Qwen3-1.7B-ShiningValiant3-q8-mlx was converted to MLX format from ValiantLabs/Qwen3-1.7B-ShiningValiant3 using mlx-lm version 0.26.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-1.7B-ShiningValiant3-q8-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)