SentenceTransformer based on answerdotai/ModernBERT-large
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large on the stsb dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nickprock/ModernBERT-large-sts")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8806 | 0.8505 |
spearman_cosine | 0.8877 | 0.8678 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.16 tokens
- max: 28 tokens
- min: 6 tokens
- mean: 10.12 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.11 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 15.1 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.2778 | 100 | 25.6058 | 22.1112 | 0.7926 | - |
0.5556 | 200 | 21.8238 | 21.6575 | 0.8499 | - |
0.8333 | 300 | 21.633 | 21.2353 | 0.8684 | - |
1.1111 | 400 | 22.3829 | 21.8035 | 0.8373 | - |
1.3889 | 500 | 22.0584 | 23.0027 | 0.8228 | - |
1.6667 | 600 | 21.6662 | 22.3269 | 0.8545 | - |
1.9444 | 700 | 21.2545 | 21.3335 | 0.8592 | - |
2.2222 | 800 | 20.5104 | 21.8647 | 0.8580 | - |
2.5 | 900 | 20.8763 | 21.8435 | 0.8631 | - |
2.7778 | 1000 | 20.3502 | 21.9781 | 0.8682 | - |
3.0556 | 1100 | 20.1262 | 22.3008 | 0.8662 | - |
3.3333 | 1200 | 20.0832 | 21.4932 | 0.8733 | - |
3.6111 | 1300 | 19.8407 | 22.9816 | 0.8661 | - |
3.8889 | 1400 | 20.027 | 22.3290 | 0.8729 | - |
4.1667 | 1500 | 19.2652 | 23.7340 | 0.8718 | - |
4.4444 | 1600 | 19.5304 | 23.4634 | 0.8766 | - |
4.7222 | 1700 | 19.6657 | 23.3991 | 0.8764 | - |
5.0 | 1800 | 18.8885 | 24.1863 | 0.8825 | - |
5.2778 | 1900 | 19.1028 | 23.9508 | 0.8781 | - |
5.5556 | 2000 | 19.0076 | 23.6006 | 0.8814 | - |
5.8333 | 2100 | 18.472 | 24.0162 | 0.8786 | - |
6.1111 | 2200 | 18.3949 | 24.2914 | 0.8839 | - |
6.3889 | 2300 | 17.6192 | 26.2586 | 0.8785 | - |
6.6667 | 2400 | 18.0109 | 25.8655 | 0.8820 | - |
6.9444 | 2500 | 17.8948 | 24.8124 | 0.8830 | - |
7.2222 | 2600 | 17.6087 | 26.6571 | 0.8837 | - |
7.5 | 2700 | 17.1578 | 26.9229 | 0.8838 | - |
7.7778 | 2800 | 17.0154 | 27.1973 | 0.8850 | - |
8.0556 | 2900 | 16.5323 | 28.2881 | 0.8836 | - |
8.3333 | 3000 | 16.0817 | 28.4812 | 0.8874 | - |
8.6111 | 3100 | 16.1146 | 29.0393 | 0.8869 | - |
8.8889 | 3200 | 16.0888 | 29.6142 | 0.8872 | - |
9.1667 | 3300 | 15.7132 | 30.1223 | 0.8873 | - |
9.4444 | 3400 | 15.2933 | 30.4500 | 0.8870 | - |
9.7222 | 3500 | 14.7292 | 30.8898 | 0.8876 | - |
10.0 | 3600 | 15.1894 | 30.9508 | 0.8877 | - |
-1 | -1 | - | - | - | 0.8678 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nickprock/ModernBERT-large-sts
Base model
answerdotai/ModernBERT-largeDataset used to train nickprock/ModernBERT-large-sts
Evaluation results
- Pearson Cosine on sts devself-reported0.881
- Spearman Cosine on sts devself-reported0.888
- Pearson Cosine on sts testself-reported0.851
- Spearman Cosine on sts testself-reported0.868