ProjectIndus / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
57af567 verified
|
raw
history blame
10.6 kB
---
license: osl-3.0
model-index:
- name: indus_1.175B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 25.04
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0.0
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nickmalhotra/indus_1.175B
name: Open LLM Leaderboard
---
---
# Model Card for Indus
<!-- Provide a quick summary of what the model is/does. [Optional] -->
The model is a single shot fine tuned Instruct LLM in Hindi and dialects
# Table of Contents
- [Model Card for Indus](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Table of Contents](#table-of-contents-1)
- [Model Details](#model-details)
- [Model Description](#model-description)
- [Uses](#uses)
- [Direct Use](#direct-use)
- [Downstream Use [Optional]](#downstream-use-optional)
- [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
- [Training Details](#training-details)
- [Training Data](#training-data)
- [Training Procedure](#training-procedure)
- [Preprocessing](#preprocessing)
- [Speeds, Sizes, Times](#speeds-sizes-times)
- [Evaluation](#evaluation)
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
- [Testing Data](#testing-data)
- [Factors](#factors)
- [Metrics](#metrics)
- [Results](#results)
- [Model Examination](#model-examination)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications [optional]](#technical-specifications-optional)
- [Model Architecture and Objective](#model-architecture-and-objective)
- [Compute Infrastructure](#compute-infrastructure)
- [Hardware](#hardware)
- [Software](#software)
- [Citation](#citation)
- [Glossary [optional]](#glossary-optional)
- [More Information [optional]](#more-information-optional)
- [Model Card Authors [optional]](#model-card-authors-optional)
- [Model Card Contact](#model-card-contact)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is/does. -->
The model is a single shot fine tuned Instruct LLM in Hindi and dialects
- **Developed by:** Nikhil Malhotra, Nilesh Brahme, Satish Mishra, Vinay Sharma (Makers Lab, TechMahindra)
- **Model type:** Foundational Language model
- **Language(s) (NLP):** hin, bho, mai, doi
- **License:** other
- **Parent Model:** It is the parent model on GPT architecture
- **Resources for more information:** More information needed
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
## Downstream Use [Optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Significant research has explored bias and fairness issues with language models
(see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
More information on training data needed
## Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
More information needed
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
More information needed
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
More information needed
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
More information needed
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed
# Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
More information needed
**APA:**
More information needed
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
Nikhil Malhotra, Nilesh Brahme, Vinay Sharma, Satish Mishra
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="nickmalhotra/Indus_1.175B")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nickmalhotra/Indus_1.175B")
model = AutoModelForCausalLM.from_pretrained("nickmalhotra/Indus_1.175B")
<details>
<summary> Click to expand </summary>
More information needed
</details>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nickmalhotra__indus_1.175B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |20.07|
|AI2 Reasoning Challenge (25-Shot)|22.70|
|HellaSwag (10-Shot) |25.04|
|MMLU (5-Shot) |23.12|
|TruthfulQA (0-shot) | 0.00|
|Winogrande (5-shot) |49.57|
|GSM8k (5-shot) | 0.00|