Text Embedding Models
Collection
9 items
•
Updated
•
1
This is a sentence-transformers model finetuned from newmindai/TurkEmbed4STS. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Bir yıl tam yelken üniversitesini ne kadar ödeyeceğim',
"Full Sail Üniversitesi'nde öğrenim ve ücretler 23,117 $ mali yardım olmadan. Oda, yönetim kurulu ve diğer ücretlerin bir araya getirilmesiyle, toplam katılım maliyeti 23,647 $ 'dır. Maliyet ve Yardım. Pahalı öğrenim (23.117 $, eyalet içi ve eyalet dışı öğrenciler için aynı)",
'Hangi hemoglobin seviyesi anemik olarak kabul edilir - ben anemikim ve 88 g / l hemoglobin seviyesine sahipim. Bu ne kadar ciddi? 88 mi demek istediniz? Normal hemoglobin yaklaşık 15 (+/- az) bu yüzden 8 civarında gerçekten çok düşüktür. Bu aneminin nedeni araştırılmış ve düzgün bir şekilde tedavi edilmiş olmalıdır. Bu arada kan transfüzyonuna ihtiyacınız olabilir',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0
, sentence_1
, and label
sentence_0 | sentence_1 | label | |
---|---|---|---|
type | string | string | float |
details |
|
|
|
sentence_0 | sentence_1 | label |
---|---|---|
Hipotez ve teori tanımı |
Teori ve Uygulamada Tanım Hakkında. Tanım sorunu uzun bir geçmişe sahiptir ve Platon ve Aristoteles'ten başlayarak Batı geleneğinin en seçkin düşünürlerinden bazılarının zihinlerini meşgul etmiştir. Ancak aynı zamanda modern toplumun bağlı olduğu sayısız metinleri hazırlamak veya yorumlamak zorunda olan herkesin sürekli karşılaştığı günlük bir sorundur. Teori ve Uygulamada Tanım, zorlukların özellikle akut bir biçimde ortaya çıktığı iki alana odaklanmaktadır: lexicography ve hukuk. |
0.0 |
Oturma ücreti nedir |
Devamını Oku 1 TÜM PORTRAİT SESSIONS INCLUDE... 2 Oturum Ücreti fotoğrafçının Zaman ve Yeteneklerini kapsar. 3 Unutma...** Vergiyi ekleyin! (%8.4 vergi ödemeniz gerekmektedir.) ** Portre seansınızdan önce oturma ücreti alınır. |
1.0 |
Kafeine ne kadar l-theanine |
Kafeini düşünün. Espresso ve kahvenin her ikisi de doğal olarak siyah ve yeşil çaylarda olduğu gibi kafeine sahiptir. Eğer içeceğinizde daha az kafein istiyorsanız, yarım kafein (1/2 normal kafein miktarı) veya kafeinsiz (kafeinsiz) sipariş edin. Ayrıca, içeceğinizden biraz daha fazla enerji arıyorsanız, ekstra kahve de ekleyebilirsiniz. |
0.0 |
MatryoshkaLoss
with these parameters:{
"loss": "CachedMultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
per_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robinoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinEpoch | Step | Training Loss |
---|---|---|
0.2781 | 500 | 9.66 |
0.5562 | 1000 | 8.0512 |
0.8343 | 1500 | 7.7153 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}