|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- w8a8 |
|
license: apache-2.0 |
|
license_link: >- |
|
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: mgoin/pixtral-12b |
|
library_name: transformers |
|
--- |
|
|
|
# pixtral-12b-quantized.w8a8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** mgoin/pixtral-12b |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT8 |
|
- **Activation quantization:** INT8 |
|
- **Release Date:** 2/24/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [mgoin/pixtral-12b](https://huggingface.co/mgoin/pixtral-12b). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [mgoin/pixtral-12b](https://huggingface.co/mgoin/pixtral-12b) to INT8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/pixtral-12b-quantized.w8a8", |
|
trust_remote_code=True, |
|
max_model_len=4096, |
|
max_num_seqs=2, |
|
) |
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
inputs = { |
|
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", |
|
"multi_modal_data": { |
|
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor |
|
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import TraceableLlavaForConditionalGeneration |
|
|
|
# Load model. |
|
model_id = mgoin/pixtral-12b |
|
model = TraceableLlavaForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto", torch_dtype="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Oneshot arguments |
|
DATASET_ID = "flickr30k" |
|
DATASET_SPLIT = {"calibration": "test[:512]"} |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
def data_collator(batch): |
|
assert len(batch) == 1 |
|
return { |
|
"input_ids": torch.LongTensor(batch[0]["input_ids"]), |
|
"attention_mask": torch.tensor(batch[0]["attention_mask"]), |
|
"pixel_values": torch.tensor(batch[0]["pixel_values"]), |
|
} |
|
|
|
|
|
# Recipe |
|
recipe = [ |
|
GPTQModifier( |
|
targets="Linear", |
|
scheme="W8A8", |
|
sequential_targets=["MistralDecoderLayer"], |
|
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
), |
|
] |
|
|
|
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w8a8" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
tokenizer=model_id, |
|
dataset=DATASET_ID, |
|
splits=DATASET_SPLIT, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
trust_remote_code_model=True, |
|
data_collator=data_collator, |
|
output_dir=SAVE_DIR |
|
) |
|
|
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### Vision Tasks |
|
- vqav2 |
|
- docvqa |
|
- mathvista |
|
- mmmu |
|
- chartqa |
|
|
|
``` |
|
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 |
|
|
|
python -m eval.run eval_vllm \ |
|
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \ |
|
--url http://0.0.0.0:8000 \ |
|
--output_dir ~/tmp |
|
--eval_name <vision_task_name> |
|
``` |
|
|
|
### Text-based Tasks |
|
#### MMLU |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
|
|
``` |
|
|
|
#### HumanEval |
|
|
|
##### Generation |
|
``` |
|
python3 codegen/generate.py \ |
|
--model neuralmagic/pixtral-12b-quantized.w8a8 \ |
|
--bs 16 \ |
|
--temperature 0.2 \ |
|
--n_samples 50 \ |
|
--root "." \ |
|
--dataset humaneval |
|
``` |
|
##### Sanitization |
|
``` |
|
python3 evalplus/sanitize.py \ |
|
humaneval/neuralmagic/pixtral-12b-quantized.w8a8_vllm_temp_0.2 |
|
``` |
|
##### Evaluation |
|
``` |
|
evalplus.evaluate \ |
|
--dataset humaneval \ |
|
--samples humaneval/neuralmagic/pixtral-12b-quantized.w8a8_vllm_temp_0.2-sanitized |
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table border="1"> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<th>neuralmagic/pixtral-12b-quantized.w8a8</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="6"><b>Vision</b></td> |
|
<td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>48.00</td> |
|
<td>46.22</td> |
|
<td>96.29%</td> |
|
</tr> |
|
<tr> |
|
<td>VQAv2 (val)<br><i>vqa_match</i></td> |
|
<td>78.71</td> |
|
<td>78.00</td> |
|
<td>99.10%</td> |
|
</tr> |
|
<tr> |
|
<td>DocVQA (val)<br><i>anls</i></td> |
|
<td>89.47</td> |
|
<td>89.35</td> |
|
<td>99.87%</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> |
|
<td>81.68</td> |
|
<td>81.60</td> |
|
<td>99.90%</td> |
|
</tr> |
|
<tr> |
|
<td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>56.50</td> |
|
<td>57.30</td> |
|
<td>101.42%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>70.07</b></td> |
|
<td><b>70.09</b></td> |
|
<td><b>100.03%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2"><b>Text</b></td> |
|
<td>HumanEval <br><i>pass@1</i></td> |
|
<td>68.40</td> |
|
<td>66.39</td> |
|
<td>97.06%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot)</td> |
|
<td>71.40</td> |
|
<td>70.50</td> |
|
<td>98.74%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
|
|
## Inference Performance |
|
|
|
|
|
This model achieves up to 1.57x speedup in single-stream deployment and up to 1.53x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. |
|
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). |
|
|
|
<details> |
|
<summary>Benchmarking Command</summary> |
|
``` |
|
guidellm --model neuralmagic/pixtral-12b-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server |
|
``` |
|
|
|
</details> |
|
|
|
### Single-stream performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Latency (s)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Latency (s)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Latency (s)</th> |
|
<th>Queries Per Dollar</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center"> |
|
<tr> |
|
<th rowspan="3" valign="top">A6000x1</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<td></td> |
|
<td>5.7</td> |
|
<td>796</td> |
|
<td>4.8</td> |
|
<td>929</td> |
|
<td>4.7</td> |
|
<td>964</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w8a8</th> |
|
<td>1.55</td> |
|
<td>3.7</td> |
|
<td>1220</td> |
|
<td>3.1</td> |
|
<td>1437</td> |
|
<td>3.0</td> |
|
<td>1511</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>2.16</td> |
|
<td>3.2</td> |
|
<td>1417</td> |
|
<td>2.1</td> |
|
<td>2093</td> |
|
<td>1.9</td> |
|
<td>2371</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<td></td> |
|
<td>3.0</td> |
|
<td>676</td> |
|
<td>2.4</td> |
|
<td>825</td> |
|
<td>2.3</td> |
|
<td>859</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w8a8</th> |
|
<td>1.38</td> |
|
<td>2.2</td> |
|
<td>904</td> |
|
<td>1.7</td> |
|
<td>1159</td> |
|
<td>1.7</td> |
|
<td>1201</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>1.83</td> |
|
<td>1.8</td> |
|
<td>1096</td> |
|
<td>1.3</td> |
|
<td>1557</td> |
|
<td>1.2</td> |
|
<td>1702</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<td></td> |
|
<td>1.8</td> |
|
<td>595</td> |
|
<td>1.5</td> |
|
<td>732</td> |
|
<td>1.4</td> |
|
<td>764</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-FP8-Dynamic</th> |
|
<td>1.35</td> |
|
<td>1.4</td> |
|
<td>767</td> |
|
<td>1.1</td> |
|
<td>1008</td> |
|
<td>1.0</td> |
|
<td>1056</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>1.37</td> |
|
<td>1.4</td> |
|
<td>787</td> |
|
<td>1.1</td> |
|
<td>1018</td> |
|
<td>1.0</td> |
|
<td>1065</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |
|
|
|
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center"> |
|
<tr> |
|
<th rowspan="3" valign="top">A6000x1</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<td></td> |
|
<td>0.6</td> |
|
<td>2632</td> |
|
<td>0.9</td> |
|
<td>4108</td> |
|
<td>1.1</td> |
|
<td>4774</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w8a8</th> |
|
<td>1.50</td> |
|
<td>0.9</td> |
|
<td>3901</td> |
|
<td>1.4</td> |
|
<td>6160</td> |
|
<td>1.6</td> |
|
<td>7292</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>1.41</td> |
|
<td>0.6</td> |
|
<td>2890</td> |
|
<td>1.3</td> |
|
<td>5758</td> |
|
<td>1.8</td> |
|
<td>8312</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>mgoin/pixtral-12b</th> |
|
<td></td> |
|
<td>1.1</td> |
|
<td>2291</td> |
|
<td>1.8</td> |
|
<td>3670</td> |
|
<td>2.1</td> |
|
<td>4284</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w8a8</th> |
|
<td>1.38</td> |
|
<td>1.5</td> |
|
<td>3096</td> |
|
<td>2.5</td> |
|
<td>5076</td> |
|
<td>3.0</td> |
|
<td>5965</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>1.40</td> |
|
<td>1.4</td> |
|
<td>2728</td> |
|
<td>2.6</td> |
|
<td>5133</td> |
|
<td>3.5</td> |
|
<td>6943</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>BF16</th> |
|
<td></td> |
|
<td>2.6</td> |
|
<td>2877</td> |
|
<td>4.0</td> |
|
<td>4372</td> |
|
<td>4.7</td> |
|
<td>5095</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-FP8-Dynamic</th> |
|
<td>1.33</td> |
|
<td>3.4</td> |
|
<td>3753</td> |
|
<td>5.4</td> |
|
<td>5862</td> |
|
<td>6.3</td> |
|
<td>6917</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/pixtral-12b-quantized.w4a16</th> |
|
<td>1.22</td> |
|
<td>2.8</td> |
|
<td>3115</td> |
|
<td>5.0</td> |
|
<td>5511</td> |
|
<td>6.2</td> |
|
<td>6777</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPS: Queries per second. |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |