nm-research's picture
Update README.md
134fd5e verified
|
raw
history blame
7.03 kB
---
license: mit
tags:
- deepseek
- fp8
- vllm
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
library_name: transformers
---
# DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic
## Model Overview
- **Model Architecture:** Qwen2ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/5/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B).
### Model Optimizations
This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme.
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
## Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
number_gpus = 1
model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os
# Load model
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
model_name = model_stub.split("/")[-1]
model = AutoModelForCausalLM.from_pretrained(
model_stub,
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=["lm_head"],
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
## Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
OpenLLM Leaderboard V2:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
<td>37.02</td>
<td>37.71</td>
<td>101.4%</td>
</tr>
<tr>
<td>GSM8K (Strict-Match, 5-shot)</td>
<td>69.98</td>
<td>68.99</td>
<td>98.6%</td>
</tr>
<tr>
<td>HellaSwag (Acc-Norm, 10-shot)</td>
<td>43.86</td>
<td>43.61</td>
<td>99.4%</td>
</tr>
<tr>
<td>MMLU (Acc, 5-shot)</td>
<td>37.38</td>
<td>37.22</td>
<td>99.6%</td>
</tr>
<tr>
<td>TruthfulQA (MC2, 0-shot)</td>
<td>45.21</td>
<td>44.77</td>
<td>99.0%</td>
</tr>
<tr>
<td>Winogrande (Acc, 5-shot)</td>
<td>54.30</td>
<td>54.62</td>
<td>100.6%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>47.99</b></td>
<td><b>47.82</b></td>
<td><b>99.7%</b></td>
</tr>
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
<td>34.37</td>
<td>34.91</td>
<td>101.6%</td>
</tr>
<tr>
<td>BBH (Acc-Norm, 3-shot)</td>
<td>34.44</td>
<td>34.40</td>
<td>99.9%</td>
</tr>
<tr>
<td>Math-Hard (Exact-Match, 4-shot)</td>
<td>0.00</td>
<td>0.00</td>
<td>---</td>
</tr>
<tr>
<td>GPQA (Acc-Norm, 0-shot)</td>
<td>24.67</td>
<td>25.16</td>
<td>102.0%</td>
</tr>
<tr>
<td>MUSR (Acc-Norm, 0-shot)</td>
<td>35.82</td>
<td>36.61</td>
<td>102.2%</td>
</tr>
<tr>
<td>MMLU-Pro (Acc, 5-shot)</td>
<td>11.80</td>
<td>11.69</td>
<td>99.1%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>23.52</b></td>
<td><b>23.79</b></td>
<td><b>101.2%</b></td>
</tr>
<tr>
<td rowspan="4"><b>Coding</b></td>
<td>HumanEval (pass@1)</td>
<td>37.90</td>
<td>36.40</td>
<td><b>96.0%</b></td>
</tr>
<tr>
<td>HumanEval (pass@10)</td>
<td>61.30</td>
<td>61.30</td>
<td>100.0%</td>
</tr>
<tr>
<td>HumanEval+ (pass@10)</td>
<td>33.00</td>
<td>32.60</td>
<td>98.8%</td>
</tr>
<tr>
<td>HumanEval+ (pass@10)</td>
<td>55.90</td>
<td>56.30</td>
<td>100.7%</td>
</tr>
</tbody>
</table>