Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- deepseek
|
5 |
+
- int8
|
6 |
+
- vllm
|
7 |
+
- llmcompressor
|
8 |
+
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# DeepSeek-R1-Distill-Llama-8B-quantized.w8a8
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
- **Model Architecture:** LlamaForCausalLM
|
16 |
+
- **Input:** Text
|
17 |
+
- **Output:** Text
|
18 |
+
- **Model Optimizations:**
|
19 |
+
- **Weight quantization:** INT8
|
20 |
+
- **Activation quantization:** INT8
|
21 |
+
- **Release Date:** 2/1/2025
|
22 |
+
- **Version:** 1.0
|
23 |
+
- **Model Developers:** Neural Magic
|
24 |
+
|
25 |
+
Quantized version of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B).
|
26 |
+
|
27 |
+
|
28 |
+
### Model Optimizations
|
29 |
+
|
30 |
+
This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) to INT8 data type.
|
31 |
+
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
|
32 |
+
Weight quantization also reduces disk size requirements by approximately 50%.
|
33 |
+
|
34 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized.
|
35 |
+
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme.
|
36 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
|
37 |
+
|
38 |
+
|
39 |
+
## Use with vLLM
|
40 |
+
|
41 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer
|
45 |
+
from vllm import LLM, SamplingParams
|
46 |
+
|
47 |
+
number_gpus = 1
|
48 |
+
model_name = "neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8"
|
49 |
+
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
52 |
+
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)
|
53 |
+
|
54 |
+
messages_list = [
|
55 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
56 |
+
]
|
57 |
+
|
58 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
59 |
+
|
60 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
61 |
+
|
62 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
63 |
+
print(generated_text)
|
64 |
+
```
|
65 |
+
|
66 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
67 |
+
|
68 |
+
## Creation
|
69 |
+
|
70 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
71 |
+
|
72 |
+
|
73 |
+
```python
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
76 |
+
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
|
77 |
+
from llmcompressor.transformers import oneshot
|
78 |
+
|
79 |
+
# Load model
|
80 |
+
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
81 |
+
model_name = model_stub.split("/")[-1]
|
82 |
+
|
83 |
+
num_samples = 1024
|
84 |
+
max_seq_len = 8192
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
87 |
+
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(
|
89 |
+
model_stub,
|
90 |
+
device_map=device_map,
|
91 |
+
torch_dtype="auto",
|
92 |
+
)
|
93 |
+
|
94 |
+
def preprocess_fn(example):
|
95 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
|
96 |
+
|
97 |
+
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
|
98 |
+
ds = ds.map(preprocess_fn)
|
99 |
+
|
100 |
+
# Configure the quantization algorithm and scheme
|
101 |
+
recipe = [
|
102 |
+
SmoothQuantModifier(smoothing_strength=0.8),
|
103 |
+
QuantizationModifier(
|
104 |
+
targets="Linear",
|
105 |
+
scheme="W8A8",
|
106 |
+
ignore=["lm_head"],
|
107 |
+
dampening_frac=0.1,
|
108 |
+
),
|
109 |
+
]
|
110 |
+
|
111 |
+
# Apply quantization
|
112 |
+
oneshot(
|
113 |
+
model=model,
|
114 |
+
dataset=ds,
|
115 |
+
recipe=recipe,
|
116 |
+
max_seq_length=max_seq_len,
|
117 |
+
num_calibration_samples=num_samples,
|
118 |
+
)
|
119 |
+
|
120 |
+
# Save to disk in compressed-tensors format
|
121 |
+
save_path = model_name + "-quantized.w8a8
|
122 |
+
model.save_pretrained(save_path)
|
123 |
+
tokenizer.save_pretrained(save_path)
|
124 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
125 |
+
```
|
126 |
+
|
127 |
+
## Evaluation
|
128 |
+
|
129 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
|
130 |
+
|
131 |
+
OpenLLM Leaderboard V1:
|
132 |
+
```
|
133 |
+
lm_eval \
|
134 |
+
--model vllm \
|
135 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
|
136 |
+
--tasks openllm \
|
137 |
+
--write_out \
|
138 |
+
--batch_size auto \
|
139 |
+
--output_path output_dir \
|
140 |
+
--show_config
|
141 |
+
```
|
142 |
+
|
143 |
+
OpenLLM Leaderboard V2:
|
144 |
+
```
|
145 |
+
lm_eval \
|
146 |
+
--model vllm \
|
147 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
|
148 |
+
--apply_chat_template \
|
149 |
+
--fewshot_as_multiturn \
|
150 |
+
--tasks leaderboard \
|
151 |
+
--write_out \
|
152 |
+
--batch_size auto \
|
153 |
+
--output_path output_dir \
|
154 |
+
--show_config
|
155 |
+
```
|
156 |
+
|
157 |
+
### Accuracy
|
158 |
+
|
159 |
+
<table>
|
160 |
+
<thead>
|
161 |
+
<tr>
|
162 |
+
<th>Category</th>
|
163 |
+
<th>Metric</th>
|
164 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
|
165 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th>
|
166 |
+
<th>Recovery</th>
|
167 |
+
</tr>
|
168 |
+
</thead>
|
169 |
+
<tbody>
|
170 |
+
<tr>
|
171 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
172 |
+
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
|
173 |
+
<td>45.05</td>
|
174 |
+
<td>45.22</td>
|
175 |
+
<td>100.4%</td>
|
176 |
+
</tr>
|
177 |
+
<tr>
|
178 |
+
<td>GSM8K (Strict-Match, 5-shot)</td>
|
179 |
+
<td>62.77</td>
|
180 |
+
<td>62.09</td>
|
181 |
+
<td>98.9%</td>
|
182 |
+
</tr>
|
183 |
+
<tr>
|
184 |
+
<td>HellaSwag (Acc-Norm, 10-shot)</td>
|
185 |
+
<td>76.78</td>
|
186 |
+
<td>76.80</td>
|
187 |
+
<td>100.0%</td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td>MMLU (Acc, 5-shot)</td>
|
191 |
+
<td>55.65</td>
|
192 |
+
<td>55.53</td>
|
193 |
+
<td>99.8%</td>
|
194 |
+
</tr>
|
195 |
+
<tr>
|
196 |
+
<td>TruthfulQA (MC2, 0-shot)</td>
|
197 |
+
<td>50.55</td>
|
198 |
+
<td>49.89</td>
|
199 |
+
<td>98.7%</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td>Winogrande (Acc, 5-shot)</td>
|
203 |
+
<td>68.51</td>
|
204 |
+
<td>67.40</td>
|
205 |
+
<td>98.4%</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td><b>Average Score</b></td>
|
209 |
+
<td><b>59.88</b></td>
|
210 |
+
<td><b>59.49</b></td>
|
211 |
+
<td><b>99.3%</b></td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
215 |
+
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
|
216 |
+
<td>38.34</td>
|
217 |
+
<td>39.07</td>
|
218 |
+
<td>101.9%</td>
|
219 |
+
</tr>
|
220 |
+
<tr>
|
221 |
+
<td>BBH (Acc-Norm, 3-shot)</td>
|
222 |
+
<td>38.19</td>
|
223 |
+
<td>39.57</td>
|
224 |
+
<td>103.6%</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td>Math-Hard (Exact-Match, 4-shot)</td>
|
228 |
+
<td>0.00</td>
|
229 |
+
<td>0.00</td>
|
230 |
+
<td>---</td>
|
231 |
+
</tr>
|
232 |
+
<tr>
|
233 |
+
<td>GPQA (Acc-Norm, 0-shot)</td>
|
234 |
+
<td>28.87</td>
|
235 |
+
<td>27.28</td>
|
236 |
+
<td>94.5%</td>
|
237 |
+
</tr>
|
238 |
+
<tr>
|
239 |
+
<td>MUSR (Acc-Norm, 0-shot)</td>
|
240 |
+
<td>33.31</td>
|
241 |
+
<td>34.50</td>
|
242 |
+
<td>103.6%</td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td>MMLU-Pro (Acc, 5-shot)</td>
|
246 |
+
<td>20.10</td>
|
247 |
+
<td>20.60</td>
|
248 |
+
<td>102.4%</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td><b>Average Score</b></td>
|
252 |
+
<td><b>26.47</b></td>
|
253 |
+
<td><b>26.84</b></td>
|
254 |
+
<td><b>101.4%</b></td>
|
255 |
+
</tr>
|
256 |
+
<tr>
|
257 |
+
<td rowspan="4"><b>Coding</b></td>
|
258 |
+
<td>HumanEval (pass@1)</td>
|
259 |
+
<td>49.90</td>
|
260 |
+
<td>50.90</td>
|
261 |
+
<td><b>102.0%</b></td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td>HumanEval (pass@10)</td>
|
265 |
+
<td>68.90</td>
|
266 |
+
<td>68.70</td>
|
267 |
+
<td>99.7%</td>
|
268 |
+
</tr>
|
269 |
+
<tr>
|
270 |
+
<td>HumanEval+ (pass@10)</td>
|
271 |
+
<td>44.10</td>
|
272 |
+
<td>46.70</td>
|
273 |
+
<td>105.9%</td>
|
274 |
+
</tr>
|
275 |
+
<tr>
|
276 |
+
<td>HumanEval+ (pass@10)</td>
|
277 |
+
<td>62.90</td>
|
278 |
+
<td>64.30</td>
|
279 |
+
<td>102.2%</td>
|
280 |
+
</tr>
|
281 |
+
</tbody>
|
282 |
+
</table>
|