base_model: Qwen/Qwen3-32B
datasets:
  - neko-llm/HLE_SFT_general
  - neko-llm/HLE_SFT_OpenThoughts-114k
  - neko-llm/HLE_SFT_OpenMathReasoning
  - neko-llm/HLE_SFT_MixtureOfThoughts
  - neko-llm/HLE_SFT_MixtureOfThoughts
  - neko-llm/HLE_SFT_Chemistry
  - neko-llm/HLE_SFT_biology
  - neko-llm/HLE_SFT_medical
  - neko-llm/HLE_SFT_general
  - neko-llm/HLE_SFT_humanity
library_name: transformers
model_name: Qwen3-32B-HLE
tags:
  - generated_from_trainer
  - open-r1
  - sft
  - trl
licence: license
Model Card for Qwen3-32B-HLE
This model is a fine-tuned version of Qwen/Qwen3-32B on the [['neko-llm/HLE_SFT_general', 'neko-llm/HLE_SFT_OpenThoughts-114k', 'neko-llm/HLE_SFT_OpenMathReasoning', 'neko-llm/HLE_SFT_MixtureOfThoughts', 'neko-llm/HLE_SFT_MixtureOfThoughts', 'neko-llm/HLE_SFT_Chemistry', 'neko-llm/HLE_SFT_biology', 'neko-llm/HLE_SFT_medical', 'neko-llm/HLE_SFT_general', 'neko-llm/HLE_SFT_humanity']](https://huggingface.co/datasets/['neko-llm/HLE_SFT_general', 'neko-llm/HLE_SFT_OpenThoughts-114k', 'neko-llm/HLE_SFT_OpenMathReasoning', 'neko-llm/HLE_SFT_MixtureOfThoughts', 'neko-llm/HLE_SFT_MixtureOfThoughts', 'neko-llm/HLE_SFT_Chemistry', 'neko-llm/HLE_SFT_biology', 'neko-llm/HLE_SFT_medical', 'neko-llm/HLE_SFT_general', 'neko-llm/HLE_SFT_humanity']) dataset. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="neko-llm/Qwen3-32B-HLE", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.19.0
 - Transformers: 4.54.1
 - Pytorch: 2.6.0
 - Datasets: 4.0.0
 - Tokenizers: 0.21.2
 
Citations
Cite TRL as:
@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}