naufalso's picture
update model card README.md
058f47d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mit_restaurant
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-finetuned-mit-restaurant-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mit_restaurant
          type: mit_restaurant
          config: mit_restaurant
          split: validation
          args: mit_restaurant
        metrics:
          - name: Precision
            type: precision
            value: 0.776800439802089
          - name: Recall
            type: recall
            value: 0.7983050847457627
          - name: F1
            type: f1
            value: 0.7874059626636947
          - name: Accuracy
            type: accuracy
            value: 0.9116093286947559

distilbert-finetuned-mit-restaurant-ner

This model is a fine-tuned version of distilbert-base-uncased on the mit_restaurant dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3210
  • Precision: 0.7768
  • Recall: 0.7983
  • F1: 0.7874
  • Accuracy: 0.9116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6991 1.0 863 0.3478 0.7113 0.7684 0.7387 0.8994
0.2773 2.0 1726 0.3264 0.7533 0.7989 0.7754 0.9063
0.2164 3.0 2589 0.3137 0.7644 0.8045 0.7839 0.9121
0.1789 4.0 3452 0.3163 0.7755 0.7983 0.7867 0.9115
0.1573 5.0 4315 0.3210 0.7768 0.7983 0.7874 0.9116

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2