|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: psychosis_multi_class |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# psychosis_multi_class |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5682 |
|
- F1: 0.6441 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.243 | 0.67 | 100 | 1.0676 | 0.5384 | |
|
| 1.0062 | 1.34 | 200 | 1.0505 | 0.5805 | |
|
| 0.8763 | 2.01 | 300 | 1.0071 | 0.6036 | |
|
| 0.6782 | 2.68 | 400 | 1.1228 | 0.5779 | |
|
| 0.5557 | 3.36 | 500 | 1.0853 | 0.6163 | |
|
| 0.4344 | 4.03 | 600 | 1.1696 | 0.6108 | |
|
| 0.2665 | 4.7 | 700 | 1.3123 | 0.6098 | |
|
| 0.1992 | 5.37 | 800 | 1.3979 | 0.6186 | |
|
| 0.1142 | 6.04 | 900 | 1.5341 | 0.6401 | |
|
| 0.0643 | 6.71 | 1000 | 1.6514 | 0.6269 | |
|
| 0.0423 | 7.38 | 1100 | 1.7897 | 0.6196 | |
|
| 0.0231 | 8.05 | 1200 | 1.9231 | 0.6063 | |
|
| 0.0184 | 8.72 | 1300 | 1.9370 | 0.6308 | |
|
| 0.0102 | 9.4 | 1400 | 1.9790 | 0.6289 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.14.1 |
|
|