Division Classification Model

This is a single label classification task for automated tagging of documents in Science Discovery Engine. Based on INDUS Model

The idx to label mapping is:

"0": "Astrophysics",
"1": "Biological and Physical Sciences",
"2": "Earth Science",
"3": "Heliophysics",
"4": "Planetary Science"

Data distribution

image/png

Evalution of the model:

image/png

image/png

How to Use

You can load this model using the Hugging Face 🤗 Transformers library:

Using the Pipeline

from transformers import pipeline

classifier = pipeline("text-classification", model="nasa-impact/division-classifier")
prediction = classifier("Your input text", truncation=True, padding="max_length", max_length=512)
print(prediction)

Using the Model

from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "nasa-impact/division-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

inputs = tokenizer("Your input text", return_tensors="pt", truncation=True, max_length=512, padding="max_length")
outputs = model(**inputs)
predicted_label = outputs.logits.argmax(-1).item()
print(predicted_label)
Downloads last month
237
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nasa-impact/division-classifier

Finetuned
(4)
this model