|
--- |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: image-classification |
|
tags: |
|
- MobileNetV2 |
|
- accident-detection |
|
library_name: transformers |
|
--- |
|
|
|
An image classification model for detecting car crashes from traffic cams. An easier to run version of Crashly is currently in development. To run this model, use the following code snippet. |
|
``` |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
|
|
# Load TFLite model and allocate tensors. |
|
interpreter = tf.lite.Interpreter(model_path="{model_name}.tflite") |
|
interpreter.allocate_tensors() |
|
|
|
# Get input and output tensors. |
|
input_details = interpreter.get_input_details() |
|
output_details = interpreter.get_output_details() |
|
|
|
input_shape = input_details[0]['shape'] |
|
|
|
# Load and preprocess image |
|
def load_image(image_path): |
|
img = Image.open(image_path).convert('RGB') |
|
img = img.resize([input_shape[1], input_shape[2]]) |
|
|
|
img = np.asarray(img, dtype='float32') / 255 |
|
# Return a scaled array between -1 and 1 |
|
return img * 2 - 1 |
|
|
|
if __name__ == "__main__": |
|
input_data = load_image("/tmp/your-image-here.jpg") |
|
interpreter.set_tensor(input_details[0]['index'], input_data) |
|
|
|
interpreter.invoke() |
|
|
|
# The function `get_tensor()` returns a copy of the tensor data. |
|
# Use `tensor()` in order to get a pointer to the tensor. |
|
output_data = interpreter.get_tensor(output_details[0]['index']) |
|
print(output_data) |
|
``` |