nadirzn's picture
layoutlmv3-finetuned-v6
faec217 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-v6
    results: []

layoutlmv3-finetuned-v6

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1889
  • Precision: 0.9549
  • Recall: 0.9322
  • F1: 0.9434
  • Accuracy: 0.9767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3158 100 0.0637 0.9864 0.9864 0.9864 0.9831
No log 2.6316 200 0.1441 0.9613 0.9254 0.9430 0.9640
No log 3.9474 300 0.0723 0.9685 0.9390 0.9535 0.9682
No log 5.2632 400 0.1235 0.9414 0.9254 0.9333 0.9682
0.031 6.5789 500 0.1814 0.9685 0.9390 0.9535 0.9809
0.031 7.8947 600 0.1842 0.9549 0.9322 0.9434 0.9767
0.031 9.2105 700 0.1873 0.9549 0.9322 0.9434 0.9767
0.031 10.5263 800 0.1938 0.9549 0.9322 0.9434 0.9725
0.031 11.8421 900 0.1938 0.9549 0.9322 0.9434 0.9746
0.0003 13.1579 1000 0.1889 0.9549 0.9322 0.9434 0.9767

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0