See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: katuni4ka/tiny-random-dbrx
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- a69c39734819523a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a69c39734819523a_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/708b4747-91da-46c9-b77e-16b821b3fd1d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/a69c39734819523a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f200e9b6-0cd3-4ed2-a65a-2d405aaa2695
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f200e9b6-0cd3-4ed2-a65a-2d405aaa2695
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
708b4747-91da-46c9-b77e-16b821b3fd1d
This model is a fine-tuned version of katuni4ka/tiny-random-dbrx on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 330
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0075 | 1 | 11.5 |
No log | 0.3019 | 40 | 11.5 |
No log | 0.6038 | 80 | 11.5 |
23.0 | 0.9057 | 120 | 11.5 |
23.0 | 1.2075 | 160 | 11.5 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/708b4747-91da-46c9-b77e-16b821b3fd1d
Base model
katuni4ka/tiny-random-dbrx