Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: false
base_model: microsoft/phi-2
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 5e36b0dfd0daa960_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5e36b0dfd0daa960_train_data.json
  type:
    field_input: ''
    field_instruction: question
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 12
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrferr3t/0b701c4d-c0dd-4869-a595-dbaef1150740
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 12
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 
micro_batch_size: 16
mlflow_experiment_name: /tmp/5e36b0dfd0daa960_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 12
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: 
wandb_name: 5810cd80-bcf6-4aaa-80fe-c8a0864b56d8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5810cd80-bcf6-4aaa-80fe-c8a0864b56d8
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

0b701c4d-c0dd-4869-a595-dbaef1150740

This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0398 1 1.0693
1.1042 0.4776 12 1.0669
1.0844 0.9552 24 1.0213
1.0981 1.4328 36 0.9759
0.9907 1.9104 48 0.9481
1.044 2.3881 60 0.9411
0.9661 2.8657 72 0.9332
1.022 3.3433 84 0.9306
0.9604 3.8209 96 0.9335
1.0204 4.2985 108 0.9257
0.9454 4.7761 120 0.9301
1.0118 5.2537 132 0.9222
0.9359 5.7313 144 0.9220
1.0025 6.2090 156 0.9157
0.9201 6.6866 168 0.9116
0.9909 7.1642 180 0.9098
0.9095 7.6418 192 0.9063
0.9738 8.1194 204 0.9030
0.8978 8.5970 216 0.9029
0.9746 9.0746 228 0.9043
0.8927 9.5522 240 0.8971
0.9479 10.0299 252 0.8916
0.8778 10.5075 264 0.8962
0.8857 10.9851 276 0.8961
0.9468 11.4627 288 0.9062

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/0b701c4d-c0dd-4869-a595-dbaef1150740

Base model

microsoft/phi-2
Adapter
(926)
this model