See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: microsoft/phi-2
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 5e36b0dfd0daa960_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5e36b0dfd0daa960_train_data.json
type:
field_input: ''
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 12
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrferr3t/0b701c4d-c0dd-4869-a595-dbaef1150740
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 12
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 16
mlflow_experiment_name: /tmp/5e36b0dfd0daa960_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 12
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: 5810cd80-bcf6-4aaa-80fe-c8a0864b56d8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5810cd80-bcf6-4aaa-80fe-c8a0864b56d8
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
0b701c4d-c0dd-4869-a595-dbaef1150740
This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9062
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0398 | 1 | 1.0693 |
1.1042 | 0.4776 | 12 | 1.0669 |
1.0844 | 0.9552 | 24 | 1.0213 |
1.0981 | 1.4328 | 36 | 0.9759 |
0.9907 | 1.9104 | 48 | 0.9481 |
1.044 | 2.3881 | 60 | 0.9411 |
0.9661 | 2.8657 | 72 | 0.9332 |
1.022 | 3.3433 | 84 | 0.9306 |
0.9604 | 3.8209 | 96 | 0.9335 |
1.0204 | 4.2985 | 108 | 0.9257 |
0.9454 | 4.7761 | 120 | 0.9301 |
1.0118 | 5.2537 | 132 | 0.9222 |
0.9359 | 5.7313 | 144 | 0.9220 |
1.0025 | 6.2090 | 156 | 0.9157 |
0.9201 | 6.6866 | 168 | 0.9116 |
0.9909 | 7.1642 | 180 | 0.9098 |
0.9095 | 7.6418 | 192 | 0.9063 |
0.9738 | 8.1194 | 204 | 0.9030 |
0.8978 | 8.5970 | 216 | 0.9029 |
0.9746 | 9.0746 | 228 | 0.9043 |
0.8927 | 9.5522 | 240 | 0.8971 |
0.9479 | 10.0299 | 252 | 0.8916 |
0.8778 | 10.5075 | 264 | 0.8962 |
0.8857 | 10.9851 | 276 | 0.8961 |
0.9468 | 11.4627 | 288 | 0.9062 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/0b701c4d-c0dd-4869-a595-dbaef1150740
Base model
microsoft/phi-2