|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5_recommendation_jobs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5_recommendation_jobs |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5136 |
|
- Rouge1: 61.4539 |
|
- Rouge2: 35.8407 |
|
- Rougel: 61.0072 |
|
- Rougelsum: 61.0251 |
|
- Gen Len: 4.0796 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 0.97 | 8 | 0.4263 | 59.6302 | 33.5251 | 59.0023 | 59.1277 | 4.0973 | |
|
| No log | 1.94 | 16 | 0.4339 | 59.1603 | 34.6165 | 58.6462 | 58.6462 | 4.0796 | |
|
| No log | 2.91 | 24 | 0.4536 | 58.6452 | 35.4130 | 58.0788 | 58.0080 | 4.1593 | |
|
| No log | 4.0 | 33 | 0.4584 | 59.7040 | 35.4130 | 59.3226 | 59.1646 | 4.0531 | |
|
| No log | 4.97 | 41 | 0.4627 | 61.6962 | 38.1121 | 61.3938 | 61.2684 | 4.0531 | |
|
| No log | 5.94 | 49 | 0.4677 | 61.3496 | 36.9027 | 60.8776 | 60.8175 | 4.0 | |
|
| No log | 6.91 | 57 | 0.4716 | 60.6511 | 35.8997 | 59.9610 | 59.9758 | 4.0885 | |
|
| No log | 8.0 | 66 | 0.4925 | 60.4003 | 34.9558 | 60.0000 | 59.9779 | 4.0177 | |
|
| No log | 8.97 | 74 | 0.4905 | 57.9340 | 32.9499 | 57.5432 | 57.6117 | 4.0265 | |
|
| No log | 9.94 | 82 | 0.4951 | 60.5120 | 35.7965 | 59.7777 | 59.9842 | 4.1062 | |
|
| No log | 10.91 | 90 | 0.5053 | 61.3885 | 37.2566 | 60.9166 | 61.0862 | 4.0973 | |
|
| No log | 12.0 | 99 | 0.5131 | 61.1473 | 35.6637 | 60.3666 | 60.4867 | 4.1593 | |
|
| No log | 12.97 | 107 | 0.5180 | 59.8736 | 33.5398 | 59.2225 | 59.2162 | 4.1062 | |
|
| No log | 13.94 | 115 | 0.5224 | 61.8163 | 36.6667 | 61.3812 | 61.4138 | 4.0708 | |
|
| No log | 14.55 | 120 | 0.5136 | 61.4539 | 35.8407 | 61.0072 | 61.0251 | 4.0796 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.3 |
|
|