🔍 UAP-UAI Detection with YOLOv8-12S
This YOLO12X model is fine-tuned on a custom dataset consisting of annotated aerial images for detecting two object classes: UAP and UAI. The training was conducted using the Ultralytics framework.
📁 Dataset
- Images: Custom drone footage frames
- Classes:
0
: UAP1
: UAI
- Annotation format: YOLO (TXT with class x_center y_center width height)
- Split: No separate val/test — trained and evaluated on the full dataset
🧠 Model Details
- Base:
YOLOv12X
- Params: 4.8M
- Trained for: 100 epochs
- Image size: 640×640
- Batch size: 16
- Optimizer: SGD (default Ultralytics settings)
- Loss Function: CIoU + BCE
- Augmentations: mosaic, random affine, color jitter, horizontal flip
📊 Evaluation Results
Aggregate Metrics
Metric | Value |
---|---|
[email protected] | 0.995 |
[email protected]:0.95 | 0.983 |
box_loss | 0.2368 |
cls_loss | 0.207 |
dfl_loss | 0.8056 |
🖼️ Sample Predictions
🚀 Inference Example
from ultralytics import YOLO
model = YOLO("momererkoc/uap-uai-object-detection-yolo12x")
results = model("path/to/image.jpg")
results[0].show() # show prediction
Model tree for momererkoc/uap-uai-object-detection-yolo12x
Base model
momererkoc/yolov12x