See axolotl config
axolotl version: 0.7.0
adapter: qlora
base_model: meta-llama/Llama-2-7b-hf
bf16: auto
dataset_prepared_path: null
datasets:
- path: mohit9999/all_news_finance_sm_1h2023_custom
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: true
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: mohit9999/all_news_finance_sm_1h2023_custom_model_3
learning_rate: 2e-5
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: ./outputs/lora-out-3
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sdp_attention: true
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null
all_news_finance_sm_1h2023_custom_model_3
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the mohit9999/all_news_finance_sm_1h2023_custom dataset. It achieves the following results on the evaluation set:
- Loss: 4.9536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 14
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.9043 | 0.9655 | 14 | 4.9536 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for mohit9999/all_news_finance_sm_1h2023_custom_model_3
Base model
meta-llama/Llama-2-7b-hf