arabert_c19 / README.md
moha's picture
Update README.md
db758e6
|
raw
history blame
5.48 kB
metadata
language: ar
widget:
  - text: للوقايه من عدم انتشار [MASK]

arabert_c19: An Arabert model pretrained on 1.5 million COVID-19 multi-dialect Arabic tweets

ARABERT COVID-19 is a pretrained (fine-tuned) version of the AraBERT v2 model (https://huggingface.co/aubmindlab/bert-base-arabertv02). The pretraining was done using 1.5 million multi-dialect Arabic tweets regarding the COVID-19 pandemic from the “Large Arabic Twitter Dataset on COVID-19” (https://arxiv.org/abs/2004.04315). The model can achieve better results for the tasks that deal with multi-dialect Arabic tweets in relation to the COVID-19 pandemic.

Classification results for multiple fake-news detection tasks with and without using the arabert_c19:

For more details refer to the paper (link)

\multicolumn{5}{c}{Without Fine-tuning} \multicolumn{5}{c}{With Fine-tuning}
\multicolumn{3}{c}{Baseline models} \multicolumn{2}{c}{Pretrained Covid-19 models}
arabert mbert
\textbf{Contains hate} 0.8346 0.6675
\textbf{Talk about a cure} 0.8193 0.7406
\textbf{Give advice} 0.8287 0.6865
\textbf{Rise moral } 0.8398 0.7075
\textbf{News or opinion } 0.8987 0.8332
\textbf{Dialect} 0.7533 0.558
\textbf{Blame and negative speech} 0.7426 0.597
\textbf{Factual} 0.9217 0.8427
\textbf{Worth fact-checking} 0.7731 0.5298
\textbf{Contains fake information} 0.6415 0.5428

Preprocessing

from arabert.preprocess import ArabertPreprocessor
model_name="moha/arabert_c19"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "للوقايه من عدم انتشار كورونا عليك اولا غسل اليدين بالماء والصابون وتكون عملية الغسل دقيقه تشمل راحة اليد الأصابع التركيز على الإبهام"
arabert_prep.preprocess(text)

Contacts

Hadj Ameur: Github | [email protected] | [email protected]