metadata
language: ar
widget:
- text: للوقايه من عدم انتشار [MASK]
arabert_c19: An Arabert model pretrained on 1.5 million COVID-19 multi-dialect Arabic tweets
ARABERT COVID-19 is a pretrained (fine-tuned) version of the AraBERT v2 model (https://huggingface.co/aubmindlab/bert-base-arabertv02). The pretraining was done using 1.5 million multi-dialect Arabic tweets regarding the COVID-19 pandemic from the “Large Arabic Twitter Dataset on COVID-19” (https://arxiv.org/abs/2004.04315). The model can achieve better results for the tasks that deal with multi-dialect Arabic tweets in relation to the COVID-19 pandemic.
Classification results for multiple fake-news detection tasks with and without using the arabert_c19:
For more details refer to the paper (link)
\multicolumn{5}{c}{Without Fine-tuning} | \multicolumn{5}{c}{With Fine-tuning} | |
---|---|---|
\multicolumn{3}{c}{Baseline models} | \multicolumn{2}{c}{Pretrained Covid-19 models} | |
arabert | mbert | |
\textbf{Contains hate} | 0.8346 | 0.6675 |
\textbf{Talk about a cure} | 0.8193 | 0.7406 |
\textbf{Give advice} | 0.8287 | 0.6865 |
\textbf{Rise moral } | 0.8398 | 0.7075 |
\textbf{News or opinion } | 0.8987 | 0.8332 |
\textbf{Dialect} | 0.7533 | 0.558 |
\textbf{Blame and negative speech} | 0.7426 | 0.597 |
\textbf{Factual} | 0.9217 | 0.8427 |
\textbf{Worth fact-checking} | 0.7731 | 0.5298 |
\textbf{Contains fake information} | 0.6415 | 0.5428 |
Preprocessing
from arabert.preprocess import ArabertPreprocessor
model_name="moha/arabert_c19"
arabert_prep = ArabertPreprocessor(model_name=model_name)
text = "للوقايه من عدم انتشار كورونا عليك اولا غسل اليدين بالماء والصابون وتكون عملية الغسل دقيقه تشمل راحة اليد الأصابع التركيز على الإبهام"
arabert_prep.preprocess(text)
Contacts
Hadj Ameur: Github | [email protected] | [email protected]