|
--- |
|
language: |
|
- ar |
|
|
|
datasets: |
|
- ASTD |
|
|
|
tags: |
|
- ASTD |
|
|
|
widget: |
|
- text: "العنف والقتل في محيط العالم في زياده يوميا" |
|
- text: "الصداقه تزرع الحياه ازهارا" |
|
|
|
--- |
|
|
|
# BERT-ASTD Balanced |
|
Arabic version bert model fine tuned on ASTD dataset balanced version to identify twitter sentiments in Arabic language MSA dialect . |
|
|
|
## Data |
|
The model were fine-tuned on ~1330 tweet in Arabic language. |
|
|
|
|
|
## Results |
|
| class | precision | recall | f1-score | Support | |
|
|----------|-----------|--------|----------|---------| |
|
| 0 | 0.9328 | 0.9398 | 0.9363 | 133 | |
|
| 1 | 0.9394 | 0.9323 | 0.9358 | 133 | |
|
| Accuracy | | | 0.9361 | 266 | |
|
|
|
|
|
|
|
|
|
|
|
## How to use |
|
|
|
You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model_name="mofawzy/BERT-ASTD" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
``` |
|
|