phi3-mini-M1 / architecture.py
moelanoby's picture
Upload folder using huggingface_hub
f4f36e3 verified
# --- START OF FILE architecture.py ---
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict
from transformers import AutoConfig, AutoModelForCausalLM
from transformers.models.phi3.configuration_phi3 import Phi3Config
from transformers.models.phi3.modeling_phi3 import Phi3ForCausalLM
# This file contains the custom nn.Module definitions required by the fine-tuned model.
# By placing them here, the main training script is cleaner, and more importantly,
# this file can be packaged with the model for easy loading from the Hugging Face Hub.
class VectorMemoryHead(nn.Module):
"""
A memory head that compresses a sequence of vectors into a fixed number of memory slots.
It uses an encoder-decoder architecture with an attention-based memory compression mechanism.
"""
def __init__(self, hidden_dim: int, num_memory_slots: int, num_heads: int, ff_dim: int, device=None, dtype=None):
super().__init__()
self.hidden_dim = hidden_dim
self.num_memory_slots = num_memory_slots
# Use float32 for stability in attention and layer norms
encoder_layer = nn.TransformerEncoderLayer(
d_model=hidden_dim, nhead=num_heads, dim_feedforward=ff_dim, dropout=0.1, batch_first=True,
device=device, dtype=torch.float32
)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=1)
self.memory_queries = nn.Parameter(torch.randn(1, num_memory_slots, hidden_dim, device=device, dtype=torch.float32))
self.memory_attention = nn.MultiheadAttention(
embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True,
device=device, dtype=torch.float32
)
self.memory_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=torch.float32)
self.decoder_attention = nn.MultiheadAttention(
embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True,
device=device, dtype=torch.float32
)
self.decoder_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=torch.float32)
self.decoder_ffn = nn.Sequential(
nn.Linear(hidden_dim, ff_dim, device=device, dtype=torch.float32),
nn.ReLU(),
nn.Linear(ff_dim, hidden_dim, device=device, dtype=torch.float32)
)
def forward(self, memory_input_sequence: torch.Tensor):
batch_size = memory_input_sequence.shape[0]
encoded_vectors = self.encoder(memory_input_sequence.to(torch.float32))
queries = self.memory_queries.expand(batch_size, -1, -1)
compressed_memory, _ = self.memory_attention(
query=queries, key=encoded_vectors, value=encoded_vectors
)
compressed_memory = self.memory_layernorm(compressed_memory + queries)
reconstructed, _ = self.decoder_attention(
query=encoded_vectors, key=compressed_memory, value=compressed_memory
)
reconstructed_vectors = self.decoder_layernorm(reconstructed + encoded_vectors)
reconstructed_vectors = self.decoder_ffn(reconstructed_vectors)
return compressed_memory, reconstructed_vectors
class GCVectorMemoryLayer(nn.Module):
"""
A self-correcting layer designed as a drop-in replacement for nn.Linear.
It uses a VectorMemoryHead to generate corrections based on both
local (layer input) and global (model input embeddings) context.
"""
def __init__(self, input_dim: int, output_dim: int, global_input_dim: int,
memory_dim: int, num_memory_slots: int, memory_num_heads: int,
global_state_storage: Dict, device=None, dtype=None):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.memory_dim = memory_dim
self.global_state_storage = global_state_storage
self.linear = nn.Linear(input_dim, output_dim, bias=False, device=device, dtype=dtype)
self.local_state_proj = nn.Linear(input_dim, memory_dim, device=device, dtype=torch.float32)
self.global_state_proj = nn.Linear(global_input_dim, memory_dim, device=device, dtype=torch.float32)
self.memory_head = VectorMemoryHead(
hidden_dim=memory_dim, num_memory_slots=num_memory_slots,
num_heads=memory_num_heads, ff_dim=memory_dim * 2, device=device
)
self.correction_head = nn.Linear(memory_dim, 2 * output_dim, device=device, dtype=torch.float32)
self.last_corrected_activation: Optional[torch.Tensor] = None
self.last_additive_correction: Optional[torch.Tensor] = None
self.last_memory_input: Optional[torch.Tensor] = None
self.last_reconstructed_from_memory: Optional[torch.Tensor] = None
def forward(self, x: torch.Tensor):
original_dtype = x.dtype
base_output = self.linear(x)
if 'embeds' not in self.global_state_storage:
return base_output
global_embeds = self.global_state_storage['embeds']
if global_embeds.shape[1] != x.shape[1]:
global_embeds = global_embeds[:, -x.shape[1]:, :]
B, S, _ = x.shape
with torch.enable_grad():
proj_local = self.local_state_proj(x.to(torch.float32))
proj_global = self.global_state_proj(global_embeds.to(torch.float32))
memory_input = torch.stack([proj_global, proj_local], dim=2)
memory_input_flat = memory_input.view(B * S, 2, self.memory_dim)
compressed_mem_flat, recon_flat = self.memory_head(memory_input_flat)
aggregated_thought_flat = compressed_mem_flat.mean(dim=1)
aggregated_thought = aggregated_thought_flat.view(B, S, self.memory_dim)
raw_correction = self.correction_head(aggregated_thought)
gate, value = torch.chunk(raw_correction, 2, dim=-1)
corrected_activation = base_output * torch.sigmoid(gate.to(original_dtype)) + value.to(original_dtype)
if self.training:
self.last_corrected_activation = corrected_activation
self.last_additive_correction = value
self.last_memory_input = memory_input_flat
self.last_reconstructed_from_memory = recon_flat
return corrected_activation
AutoModelForCausalLM.register(Phi3Config, Phi3WithVectorMemoryForCausalLM)
# --- END OF FILE architecture.py ---