# --- START OF FILE architecture.py --- import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Dict from transformers import AutoConfig, AutoModelForCausalLM from transformers.models.phi3.configuration_phi3 import Phi3Config from transformers.models.phi3.modeling_phi3 import Phi3ForCausalLM # This file contains the custom nn.Module definitions required by the fine-tuned model. # By placing them here, the main training script is cleaner, and more importantly, # this file can be packaged with the model for easy loading from the Hugging Face Hub. class VectorMemoryHead(nn.Module): """ A memory head that compresses a sequence of vectors into a fixed number of memory slots. It uses an encoder-decoder architecture with an attention-based memory compression mechanism. """ def __init__(self, hidden_dim: int, num_memory_slots: int, num_heads: int, ff_dim: int, device=None, dtype=None): super().__init__() self.hidden_dim = hidden_dim self.num_memory_slots = num_memory_slots # Use float32 for stability in attention and layer norms encoder_layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=num_heads, dim_feedforward=ff_dim, dropout=0.1, batch_first=True, device=device, dtype=torch.float32 ) self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=1) self.memory_queries = nn.Parameter(torch.randn(1, num_memory_slots, hidden_dim, device=device, dtype=torch.float32)) self.memory_attention = nn.MultiheadAttention( embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True, device=device, dtype=torch.float32 ) self.memory_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=torch.float32) self.decoder_attention = nn.MultiheadAttention( embed_dim=hidden_dim, num_heads=num_heads, dropout=0.1, batch_first=True, device=device, dtype=torch.float32 ) self.decoder_layernorm = nn.LayerNorm(hidden_dim, device=device, dtype=torch.float32) self.decoder_ffn = nn.Sequential( nn.Linear(hidden_dim, ff_dim, device=device, dtype=torch.float32), nn.ReLU(), nn.Linear(ff_dim, hidden_dim, device=device, dtype=torch.float32) ) def forward(self, memory_input_sequence: torch.Tensor): batch_size = memory_input_sequence.shape[0] encoded_vectors = self.encoder(memory_input_sequence.to(torch.float32)) queries = self.memory_queries.expand(batch_size, -1, -1) compressed_memory, _ = self.memory_attention( query=queries, key=encoded_vectors, value=encoded_vectors ) compressed_memory = self.memory_layernorm(compressed_memory + queries) reconstructed, _ = self.decoder_attention( query=encoded_vectors, key=compressed_memory, value=compressed_memory ) reconstructed_vectors = self.decoder_layernorm(reconstructed + encoded_vectors) reconstructed_vectors = self.decoder_ffn(reconstructed_vectors) return compressed_memory, reconstructed_vectors class GCVectorMemoryLayer(nn.Module): """ A self-correcting layer designed as a drop-in replacement for nn.Linear. It uses a VectorMemoryHead to generate corrections based on both local (layer input) and global (model input embeddings) context. """ def __init__(self, input_dim: int, output_dim: int, global_input_dim: int, memory_dim: int, num_memory_slots: int, memory_num_heads: int, global_state_storage: Dict, device=None, dtype=None): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.memory_dim = memory_dim self.global_state_storage = global_state_storage self.linear = nn.Linear(input_dim, output_dim, bias=False, device=device, dtype=dtype) self.local_state_proj = nn.Linear(input_dim, memory_dim, device=device, dtype=torch.float32) self.global_state_proj = nn.Linear(global_input_dim, memory_dim, device=device, dtype=torch.float32) self.memory_head = VectorMemoryHead( hidden_dim=memory_dim, num_memory_slots=num_memory_slots, num_heads=memory_num_heads, ff_dim=memory_dim * 2, device=device ) self.correction_head = nn.Linear(memory_dim, 2 * output_dim, device=device, dtype=torch.float32) self.last_corrected_activation: Optional[torch.Tensor] = None self.last_additive_correction: Optional[torch.Tensor] = None self.last_memory_input: Optional[torch.Tensor] = None self.last_reconstructed_from_memory: Optional[torch.Tensor] = None def forward(self, x: torch.Tensor): original_dtype = x.dtype base_output = self.linear(x) if 'embeds' not in self.global_state_storage: return base_output global_embeds = self.global_state_storage['embeds'] if global_embeds.shape[1] != x.shape[1]: global_embeds = global_embeds[:, -x.shape[1]:, :] B, S, _ = x.shape with torch.enable_grad(): proj_local = self.local_state_proj(x.to(torch.float32)) proj_global = self.global_state_proj(global_embeds.to(torch.float32)) memory_input = torch.stack([proj_global, proj_local], dim=2) memory_input_flat = memory_input.view(B * S, 2, self.memory_dim) compressed_mem_flat, recon_flat = self.memory_head(memory_input_flat) aggregated_thought_flat = compressed_mem_flat.mean(dim=1) aggregated_thought = aggregated_thought_flat.view(B, S, self.memory_dim) raw_correction = self.correction_head(aggregated_thought) gate, value = torch.chunk(raw_correction, 2, dim=-1) corrected_activation = base_output * torch.sigmoid(gate.to(original_dtype)) + value.to(original_dtype) if self.training: self.last_corrected_activation = corrected_activation self.last_additive_correction = value self.last_memory_input = memory_input_flat self.last_reconstructed_from_memory = recon_flat return corrected_activation AutoModelForCausalLM.register(Phi3Config, Phi3WithVectorMemoryForCausalLM) # --- END OF FILE architecture.py ---