The model is a port of our CommentBERT model from the paper:

@inproceedings{ochodek2022automated,
  title={Automated code review comment classification to improve modern code reviews},
  author={Ochodek, Miroslaw and Staron, Miroslaw and Meding, Wilhelm and S{\"o}der, Ola},
  booktitle={International Conference on Software Quality},
  pages={23--40},
  year={2022},
  organization={Springer}
}

The original model was implemented in Keras with two outputs - comment-purpose and subject-purpose. Here, we divided it into two separate model with one output each.


license: apache-2.0

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from scipy.special import softmax

checkpoint = 'mochodek/bert4comment-purpose'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

id2class = {
    0: 'discussion_participation',
    1: 'discussion_trigger',
    2: 'change_request',
    3: 'acknowledgement',
    4: 'same_as'
}

text = "Please, make constant from that string"
encoded_input = tokenizer(text, return_tensors='pt')

output = model(**encoded_input)

scores = softmax(output.logits.detach().numpy())

id2class[np.argmax(scores)]
Downloads last month
117
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.