metadata
license: gemma
tags:
- mlx
library_name: mlx
base_model: google/gemma-3-270m-qat
pipeline_tag: text-generation
mlx-community/gemma-3-270m-qat-bf16
This model mlx-community/gemma-3-270m-qat-bf16 was converted to MLX format from google/gemma-3-270m-qat using mlx-lm version 0.26.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/gemma-3-270m-qat-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)