base_model: ContactDoctor/Bio-Medical-Llama-3-8B | |
datasets: | |
- collaiborateorg/BioMedData | |
library_name: transformers | |
license: other | |
tags: | |
- generated_from_trainer | |
- medical | |
- Healthcare & Lifesciences | |
- BioMed | |
- mlx | |
thumbnail: https://collaiborate.com/logo/logo-blue-bg-1.png | |
model-index: | |
- name: Bio-Medical-Llama-3-8B | |
results: [] | |
# mlx-community/Bio-Medical-Llama-3-8B | |
The Model [mlx-community/Bio-Medical-Llama-3-8B](https://huggingface.co/mlx-community/Bio-Medical-Llama-3-8B) was | |
converted to MLX format from [ContactDoctor/Bio-Medical-Llama-3-8B](https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-8B) | |
using mlx-lm version **0.20.1**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("mlx-community/Bio-Medical-Llama-3-8B") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |