|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: oh_scale_x.5_compute_equal |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# oh_scale_x.5_compute_equal |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/oh-dcft-v1.3_no-curation_gpt-4o-mini_scale_0.5x dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4058 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 512 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: constant |
|
- num_epochs: 25.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 0.7807 | 0.9947 | 165 | 0.7690 | |
|
| 0.7139 | 1.9955 | 331 | 0.7520 | |
|
| 0.6642 | 2.9962 | 497 | 0.7525 | |
|
| 0.6186 | 3.9970 | 663 | 0.7615 | |
|
| 0.5777 | 4.9977 | 829 | 0.7785 | |
|
| 0.5287 | 5.9985 | 995 | 0.8154 | |
|
| 0.473 | 6.9992 | 1161 | 0.8710 | |
|
| 0.4134 | 8.0 | 1327 | 0.9475 | |
|
| 0.3615 | 8.9947 | 1492 | 1.0203 | |
|
| 0.3057 | 9.9955 | 1658 | 1.1177 | |
|
| 0.2565 | 10.9962 | 1824 | 1.2368 | |
|
| 0.2099 | 11.9970 | 1990 | 1.3552 | |
|
| 0.1676 | 12.9977 | 2156 | 1.5071 | |
|
| 0.1283 | 13.9985 | 2322 | 1.6324 | |
|
| 0.1022 | 14.9992 | 2488 | 1.7542 | |
|
| 0.0779 | 16.0 | 2654 | 1.8729 | |
|
| 0.0607 | 16.9947 | 2819 | 1.9862 | |
|
| 0.0481 | 17.9955 | 2985 | 2.0547 | |
|
| 0.038 | 18.9962 | 3151 | 2.1351 | |
|
| 0.0306 | 19.9970 | 3317 | 2.2255 | |
|
| 0.0256 | 20.9977 | 3483 | 2.2699 | |
|
| 0.0221 | 21.9985 | 3649 | 2.3515 | |
|
| 0.0197 | 22.9992 | 3815 | 2.3599 | |
|
| 0.0186 | 24.0 | 3981 | 2.3888 | |
|
| 0.0169 | 24.8681 | 4125 | 2.4058 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|