Audio-Text-to-Text
Transformers
Safetensors
qwen2_audio
text2text-generation
Inference Endpoints
r1-aqa / README.md
frankenliu's picture
Update README.md
d0ac662 verified
---
library_name: transformers
license: apache-2.0
tags: []
pipeline_tag: audio-text-to-text
---
# R1-AQA --- Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
<!-- Provide a quick summary of what the model is/does. -->
## Introduction
R1-AQA is a audio question answering (AQA) model based on `Qwen2-Audio-7B-Instruct`, optimized through reinforcement learning using the group relative policy optimization (GRPO) algorithm.
This implementation has achieved state-of-the-art performance on MMAU *Test-mini* benchmark with only 38k post-training samples.
For more details, please refer to our [Github](https://github.com/xiaomi-research/r1-aqa) and [Technical Report](https://arxiv.org/abs/2503.11197).
### Table: Accuracies (%) on MMAU Test-mini benchmark
| Model | Method | Sound | Music | Speech | Average |
|--------------------------------------------|-------------------------|--------|--------|--------|---------|
| \ | Human\* | 86.31 | 78.22 | 82.17 | 82.23 |
| Gemini Pro 2.0 Flash | Direct Inference\* | 56.46 | 58.68 | 51.65 | 55.60 |
| Audio Flamingo 2 | Direct Inference\* | 61.56 | **73.95** | 30.93 | 55.48 |
| GPT4o + Strong Cap. | Direct Inference\* | 57.35 | 49.70 | **64.86** | 57.30 |
| Llama-3-8B-Instruct + Strong Cap. | Direct Inference\* | 50.75 | 48.93 | 55.25 | 52.10 |
| Gemini Pro v1.5 | Direct Inference\* | 56.75 | 49.40 | 58.55 | 54.90 |
| Qwen2-Audio-7B-Instruct | Direct Inference\* | 54.95 | 50.98 | 42.04 | 49.20 |
| GPT4o + Weak Cap. | Direct Inference\* | 39.33 | 41.90 | 58.25 | 45.70 |
| Llama-3-8B-Instruct + Weak Cap. | Direct Inference\* | 34.23 | 38.02 | 54.05 | 42.10 |
| SALMONN | Direct Inference\* | 41.00 | 34.80 | 25.50 | 33.70 |
| Qwen2-Audio-7B-Instruct | CoTA \[1\] | 60.06 | 64.30 | 60.70 | 61.71 |
| Qwen2-Audio-7B-Instruct | Zero-Shot-CoT \[2\] | 61.86 | 56.29 | 55.26 | 57.80 |
| **Qwen2-Audio-7B-Instruct** | **GRPO (Ours)** | **69.37** | 66.77 | 57.36 | **64.50** |
#### Notes:
\* The data are sourced from the MMAU official website: [https://sakshi113.github.io/mmau_homepage/](https://sakshi113.github.io/mmau_homepage/)
\[1\] Xie, Zhifei, et al. "Audio-Reasoner: Improving Reasoning Capability in Large Audio Language Models." arXiv preprint arXiv:2503.02318 (2025).
\[2\] Ma, Ziyang, et al. "Audio-CoT: Exploring Chain-of-Thought Reasoning in Large Audio Language Model." arXiv preprint arXiv:2501.07246 (2025).
## Inference
```python
import torch
import torchaudio
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
# Load model
model_name = "mispeech/r1-aqa"
processor = AutoProcessor.from_pretrained(model_name)
model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
# Load example audio
wav_path = "test-mini-audios/3fe64f3d-282c-4bc8-a753-68f8f6c35652.wav" # from MMAU dataset
waveform, sampling_rate = torchaudio.load(wav_path)
if sampling_rate != 16000:
waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
audios = [waveform[0].numpy()]
# Make prompt text
question = "Based on the given audio, identify the source of the speaking voice."
options = ["Man", "Woman", "Child", "Robot"]
prompt = f"{question} Please choose the answer from the following options: {str(options)}. Output the final answer in <answer> </answer>."
message = [
{"role": "user", "content": [
{"type": "audio", "audio_url": wav_path},
{"type": "text", "text": prompt}
]}
]
texts = processor.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Process
inputs = processor(text=texts, audios=audios, sampling_rate=16000, return_tensors="pt", padding=True).to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids = generated_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(response)
```