miosipof's picture
End of training
17e358a verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
model-index:
  - name: miosipof/whisper-small-ft-balbus-sep28k-v1.5
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8121278596051394

miosipof/whisper-small-ft-balbus-sep28k-v1.5

This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1218
  • Accuracy: 0.8121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.173 0.1253 50 0.1725 0.5682
0.1729 0.2506 100 0.1715 0.5655
0.1707 0.3759 150 0.1701 0.5680
0.1692 0.5013 200 0.1684 0.5708
0.1661 0.6266 250 0.1666 0.5762
0.1642 0.7519 300 0.1613 0.6346
0.158 0.8772 350 0.1572 0.6543
0.1522 1.0025 400 0.1475 0.6963
0.1402 1.1278 450 0.1324 0.7455
0.1258 1.2531 500 0.1230 0.7733
0.1222 1.3784 550 0.1157 0.7918
0.1091 1.5038 600 0.1112 0.8008
0.1123 1.6291 650 0.1089 0.8070
0.1107 1.7544 700 0.1177 0.7860
0.1137 1.8797 750 0.1086 0.8062
0.1061 2.0050 800 0.1063 0.8126
0.0981 2.1303 850 0.1071 0.8140
0.0957 2.2556 900 0.1097 0.8099
0.1006 2.3810 950 0.1055 0.8134
0.0974 2.5063 1000 0.1123 0.8092
0.0965 2.6316 1050 0.1078 0.8128
0.1 2.7569 1100 0.1109 0.8030
0.0985 2.8822 1150 0.1075 0.8098
0.1006 3.0075 1200 0.1058 0.8167
0.0832 3.1328 1250 0.1097 0.8151
0.0841 3.2581 1300 0.1097 0.8113
0.08 3.3835 1350 0.1104 0.8112
0.0843 3.5088 1400 0.1097 0.8139
0.0816 3.6341 1450 0.1125 0.8135
0.083 3.7594 1500 0.1097 0.8135
0.0854 3.8847 1550 0.1112 0.8170
0.0848 4.0100 1600 0.1083 0.8118
0.072 4.1353 1650 0.1161 0.8112
0.0734 4.2607 1700 0.1171 0.8126
0.0689 4.3860 1750 0.1208 0.8149
0.0682 4.5113 1800 0.1208 0.8118
0.0686 4.6366 1850 0.1215 0.8115
0.0698 4.7619 1900 0.1208 0.8120
0.0669 4.8872 1950 0.1219 0.8118
0.0698 5.0125 2000 0.1218 0.8121

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.20.3