miosipof's picture
End of training
ae79fd6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
model-index:
  - name: miosipof/whisper-tiny-ft-balbus-sep28k-v1.1
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7718583516139141

miosipof/whisper-tiny-ft-balbus-sep28k-v1.1

This model is a fine-tuned version of openai/whisper-small on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4870
  • Accuracy: 0.7719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6991 0.1253 100 0.6929 0.4616
0.686 0.2506 200 0.6816 0.5577
0.6776 0.3759 300 0.6726 0.5631
0.6591 0.5013 400 0.6472 0.6244
0.6317 0.6266 500 0.6115 0.6802
0.5836 0.7519 600 0.5672 0.7104
0.5415 0.8772 700 0.5192 0.7499
0.4856 1.0025 800 0.4999 0.7667
0.4886 1.1278 900 0.4894 0.7715
0.4727 1.2531 1000 0.4870 0.7719

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0