Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 1.0 |
|
| 0.0 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl7")
# Run inference
preds = model("발레바 발레봉 무용 난간대 스트레칭 학원 무용바 스포츠/레저>댄스>댄스소품")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 9.9786 | 18 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 70 |
| 1.0 | 70 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0357 | 1 | 0.4782 | - |
| 1.7857 | 50 | 0.3827 | - |
| 3.5714 | 100 | 0.0001 | - |
| 5.3571 | 150 | 0.0 | - |
| 7.1429 | 200 | 0.0 | - |
| 8.9286 | 250 | 0.0 | - |
| 10.7143 | 300 | 0.0 | - |
| 12.5 | 350 | 0.0 | - |
| 14.2857 | 400 | 0.0 | - |
| 16.0714 | 450 | 0.0 | - |
| 17.8571 | 500 | 0.0 | - |
| 19.6429 | 550 | 0.0 | - |
| 21.4286 | 600 | 0.0 | - |
| 23.2143 | 650 | 0.0 | - |
| 25.0 | 700 | 0.0 | - |
| 26.7857 | 750 | 0.0 | - |
| 28.5714 | 800 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}