File size: 9,514 Bytes
f170640 35794cd f170640 35794cd f170640 35794cd f170640 35794cd f170640 35794cd f170640 35794cd f170640 0bbb76f f170640 35794cd 0bbb76f 35794cd f170640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: COLOR WOW Xtra 대형 봄쉘 볼류마이저 6.5 Ounce 6.5 Ounce 모모나미
- text: 헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04
- text: 메온셀 GRAFEN 다운펌약 남자다운펌 옆머리누르기 셀프매직약 A 세일몬스터
- text: '[6월7일 이후 배송] 브리티시엠 어반 매트 클레이 100g / URBAN MATTE CLAY 헤어 왁스 미용실 강력 짧은머리 고정
남자머리 셋팅 선택X (파우치 필요없어요) (주)컨템포'
- text: Aveda Phomollient Styling Foam 6.7 oz (관부가세포함) 옵션없음 제이글로벌컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7192224622030238
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 | <ul><li>'MANIC PANIC 매닉 패닉 Bad Boy Blue 배드 보이 블루 옵션없음 제이(J) 커머스'</li><li>'미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'</li><li>'376252 씨드비 물염색 시즌2 씨비드 4회분 미디엄브라운 NEW 비건 미디엄 브라운 1박스_◈232431989◈ 제이제이홀딩스'</li></ul> |
| 3.0 | <ul><li>'로레알 테크니아트 픽스 디자인 스프레이 200ml 옵션없음 파스텔뷰티'</li><li>'과일나라 컨퓸 슈퍼하드 워터스프레이 252ml 옵션없음 다인유통'</li><li>'폴미첼 프리즈 앤 슈퍼 샤인 스프레이 250ml 옵션없음 다사다 유한책임회사'</li></ul> |
| 4.0 | <ul><li>'미쟝센 파워스윙 슈퍼하드 크림 왁스 9 미디움 리젠트업 80g 옵션없음 와라즈'</li><li>'Loma Hair Care 3525927124 LOMA 포밍 페이스트 85g(3온스) 옵션없음 넥스유로(NEXEURO)'</li><li>'차홍 왁스 쉬폰 소프트 80ml 부드러운 크림제형 옵션없음 박예찬'</li></ul> |
| 1.0 | <ul><li>'모레모 케라틴 셀프 다운 펌 6개 100g 옵션없음 건강드림'</li><li>'다주자 울트라 다운펌150ml 남자다운펌 여성매직펌 잔머리펌 다운펌set 옵션없음 포비티엘'</li><li>'미용실 다운펌약 집에서 옆머리 누르기 올리브영 악성곱슬 남자 셀프 다운펌 옵션없음 새벽 마트'</li></ul> |
| 5.0 | <ul><li>'꽃을든남자 초강력헤어젤 500ml 옵션없음 태은코리아'</li><li>'lg생활건강 아르드포 헤어젤 펌프형 300ml 옵션없음 맥센 트레이드'</li><li>'Ecoco 에코 스타일러 크리스탈 스타일링 젤 453g (3팩) 옵션없음 세렌몰1'</li></ul> |
| 2.0 | <ul><li>'밀본 니제르 클러치피즈 하이 클러치피즈 200g 헤어무스 헤어팟'</li><li>'갸스비 수퍼하드 스타일링폼 무스 185ml 홈쇼핑 동일상품 수퍼하드 스타일링폼 무스 185ml 제이에스유통'</li><li>'꽃을든남자 스타일링 헤어 무스 300ml 퀸뷰티'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7192 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test")
# Run inference
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 9.4957 | 26 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 25 |
| 1.0 | 19 |
| 2.0 | 15 |
| 3.0 | 25 |
| 4.0 | 19 |
| 5.0 | 14 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0714 | 1 | 0.4886 | - |
| 3.5714 | 50 | 0.3088 | - |
| 7.1429 | 100 | 0.049 | - |
| 10.7143 | 150 | 0.0043 | - |
| 14.2857 | 200 | 0.0001 | - |
| 17.8571 | 250 | 0.0001 | - |
| 21.4286 | 300 | 0.0001 | - |
| 25.0 | 350 | 0.0001 | - |
| 28.5714 | 400 | 0.0001 | - |
| 32.1429 | 450 | 0.0001 | - |
| 35.7143 | 500 | 0.0001 | - |
| 39.2857 | 550 | 0.0001 | - |
| 42.8571 | 600 | 0.0001 | - |
| 46.4286 | 650 | 0.0001 | - |
| 50.0 | 700 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |