File size: 9,514 Bytes
f170640
 
 
 
 
 
 
 
 
 
 
 
35794cd
 
 
 
 
 
f170640
 
 
 
 
 
 
 
 
 
 
 
 
35794cd
f170640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35794cd
 
 
 
 
 
 
 
f170640
 
 
 
 
 
35794cd
f170640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35794cd
f170640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35794cd
f170640
 
0bbb76f
f170640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35794cd
 
 
 
0bbb76f
 
35794cd
 
 
 
 
 
 
 
 
f170640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: COLOR WOW Xtra 대형 봄쉘 볼류마이저 6.5 Ounce 6.5 Ounce 모모나미
- text: 헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04
- text: 메온셀 GRAFEN 다운펌약 남자다운펌 옆머리누르기 셀프매직약 A 세일몬스터
- text: '[6월7일 이후 배송] 브리티시엠 어반 매트 클레이 100g / URBAN MATTE CLAY 헤어 왁스 미용실 강력 짧은머리 고정
    남자머리 셋팅 선택X (파우치 필요없어요) (주)컨템포'
- text: Aveda Phomollient Styling Foam 6.7 oz (관부가세포함) 옵션없음 제이글로벌컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7192224622030238
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                        |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0   | <ul><li>'MANIC PANIC 매닉 패닉 Bad Boy Blue 배드 보이 블루 옵션없음 제이(J) 커머스'</li><li>'미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'</li><li>'376252 씨드비 물염색 시즌2 씨비드 4회분 미디엄브라운 NEW 비건 미디엄 브라운 1박스_◈232431989◈ 제이제이홀딩스'</li></ul> |
| 3.0   | <ul><li>'로레알 테크니아트 픽스 디자인 스프레이 200ml 옵션없음 파스텔뷰티'</li><li>'과일나라 컨퓸 슈퍼하드 워터스프레이 252ml 옵션없음 다인유통'</li><li>'폴미첼 프리즈 앤 슈퍼 샤인 스프레이 250ml 옵션없음 다사다 유한책임회사'</li></ul>                                                   |
| 4.0   | <ul><li>'미쟝센 파워스윙 슈퍼하드 크림 왁스 9 미디움 리젠트업 80g 옵션없음 와라즈'</li><li>'Loma Hair Care 3525927124 LOMA 포밍 페이스트 85g(3온스) 옵션없음 넥스유로(NEXEURO)'</li><li>'차홍 왁스 쉬폰 소프트 80ml 부드러운 크림제형 옵션없음 박예찬'</li></ul>                     |
| 1.0   | <ul><li>'모레모 케라틴 셀프 다운 펌 6개 100g 옵션없음 건강드림'</li><li>'다주자 울트라 다운펌150ml 남자다운펌 여성매직펌 잔머리펌 다운펌set 옵션없음 포비티엘'</li><li>'미용실 다운펌약 집에서 옆머리 누르기 올리브영 악성곱슬 남자 셀프 다운펌 옵션없음 새벽 마트'</li></ul>                                |
| 5.0   | <ul><li>'꽃을든남자 초강력헤어젤 500ml 옵션없음 태은코리아'</li><li>'lg생활건강 아르드포 헤어젤 펌프형 300ml 옵션없음 맥센 트레이드'</li><li>'Ecoco 에코 스타일러 크리스탈 스타일링 젤 453g (3팩) 옵션없음 세렌몰1'</li></ul>                                                      |
| 2.0   | <ul><li>'밀본 니제르 클러치피즈 하이 클러치피즈 200g 헤어무스 헤어팟'</li><li>'갸스비 수퍼하드 스타일링폼 무스 185ml 홈쇼핑 동일상품 수퍼하드 스타일링폼 무스 185ml 제이에스유통'</li><li>'꽃을든남자 스타일링 헤어 무스 300ml 퀸뷰티'</li></ul>                                              |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7192   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test")
# Run inference
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 5   | 9.4957 | 26  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 25                    |
| 1.0   | 19                    |
| 2.0   | 15                    |
| 3.0   | 25                    |
| 4.0   | 19                    |
| 5.0   | 14                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0714  | 1    | 0.4886        | -               |
| 3.5714  | 50   | 0.3088        | -               |
| 7.1429  | 100  | 0.049         | -               |
| 10.7143 | 150  | 0.0043        | -               |
| 14.2857 | 200  | 0.0001        | -               |
| 17.8571 | 250  | 0.0001        | -               |
| 21.4286 | 300  | 0.0001        | -               |
| 25.0    | 350  | 0.0001        | -               |
| 28.5714 | 400  | 0.0001        | -               |
| 32.1429 | 450  | 0.0001        | -               |
| 35.7143 | 500  | 0.0001        | -               |
| 39.2857 | 550  | 0.0001        | -               |
| 42.8571 | 600  | 0.0001        | -               |
| 46.4286 | 650  | 0.0001        | -               |
| 50.0    | 700  | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->