metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
[애플비셀프 포레스트] 아기 100일 200일 300일 400일 돌 셀프촬영 소품대여 11월30일발송(12월4일반송) 출산/육아 >
출산/돌기념품 > 셀프촬영 > 촬영소품
- text: >-
(자수O) 수건 칠순답례품 소규모 돌잔치 돌답례품 아이보리_30~39장_2.40수 코마사 160g 장타올 출산/육아 > 출산/돌기념품
> 돌잔치용품 > 답례품
- text: >-
범띠 쥐띠 소띠 12띠탯줄도장 DIY 아기탯줄도장 고체형가능 다-6.12띠 프리미엄 블랙펄_말띠 출산/육아 > 출산/돌기념품 >
탯줄도장
- text: 첫돌 답례품 스티커 무광사각(21개입)가로3.8x세로6.4cm_백일 출산/육아 > 출산/돌기념품 > 돌잔치용품 > 행사용스티커
- text: >-
무릎담요 2p + 꿀스틱 돌답례품 돌잔치 결혼 칠순 결혼식 답례품 3) 체스 담요 (+2000)_10~29개 구매시 선택 (+500)
출산/육아 > 출산/돌기념품 > 돌잔치용품 > 답례품
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 10 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
9.0 |
|
6.0 |
|
5.0 |
|
2.0 |
|
8.0 |
|
3.0 |
|
1.0 |
|
4.0 |
|
0.0 |
|
7.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc29")
# Run inference
preds = model("첫돌 답례품 스티커 무광사각(21개입)가로3.8x세로6.4cm_백일 출산/육아 > 출산/돌기념품 > 돌잔치용품 > 행사용스티커")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 15.0529 | 28 |
Label | Training Sample Count |
---|---|
0.0 | 70 |
1.0 | 70 |
2.0 | 70 |
3.0 | 70 |
4.0 | 70 |
5.0 | 70 |
6.0 | 70 |
7.0 | 70 |
8.0 | 70 |
9.0 | 70 |
Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0073 | 1 | 0.4834 | - |
0.3650 | 50 | 0.4992 | - |
0.7299 | 100 | 0.3772 | - |
1.0949 | 150 | 0.1276 | - |
1.4599 | 200 | 0.0502 | - |
1.8248 | 250 | 0.0345 | - |
2.1898 | 300 | 0.022 | - |
2.5547 | 350 | 0.0146 | - |
2.9197 | 400 | 0.0029 | - |
3.2847 | 450 | 0.0002 | - |
3.6496 | 500 | 0.0001 | - |
4.0146 | 550 | 0.0001 | - |
4.3796 | 600 | 0.0001 | - |
4.7445 | 650 | 0.0001 | - |
5.1095 | 700 | 0.0001 | - |
5.4745 | 750 | 0.0001 | - |
5.8394 | 800 | 0.0 | - |
6.2044 | 850 | 0.0 | - |
6.5693 | 900 | 0.0 | - |
6.9343 | 950 | 0.0 | - |
7.2993 | 1000 | 0.0 | - |
7.6642 | 1050 | 0.0 | - |
8.0292 | 1100 | 0.0 | - |
8.3942 | 1150 | 0.0 | - |
8.7591 | 1200 | 0.0 | - |
9.1241 | 1250 | 0.0 | - |
9.4891 | 1300 | 0.0 | - |
9.8540 | 1350 | 0.0 | - |
10.2190 | 1400 | 0.0 | - |
10.5839 | 1450 | 0.0 | - |
10.9489 | 1500 | 0.0 | - |
11.3139 | 1550 | 0.0 | - |
11.6788 | 1600 | 0.0 | - |
12.0438 | 1650 | 0.0 | - |
12.4088 | 1700 | 0.0 | - |
12.7737 | 1750 | 0.0 | - |
13.1387 | 1800 | 0.0 | - |
13.5036 | 1850 | 0.0 | - |
13.8686 | 1900 | 0.0 | - |
14.2336 | 1950 | 0.0 | - |
14.5985 | 2000 | 0.0 | - |
14.9635 | 2050 | 0.0 | - |
15.3285 | 2100 | 0.0 | - |
15.6934 | 2150 | 0.0 | - |
16.0584 | 2200 | 0.0 | - |
16.4234 | 2250 | 0.0 | - |
16.7883 | 2300 | 0.0 | - |
17.1533 | 2350 | 0.0 | - |
17.5182 | 2400 | 0.0 | - |
17.8832 | 2450 | 0.0 | - |
18.2482 | 2500 | 0.0 | - |
18.6131 | 2550 | 0.0 | - |
18.9781 | 2600 | 0.0 | - |
19.3431 | 2650 | 0.0 | - |
19.7080 | 2700 | 0.0 | - |
20.0730 | 2750 | 0.0 | - |
20.4380 | 2800 | 0.0 | - |
20.8029 | 2850 | 0.0 | - |
21.1679 | 2900 | 0.0 | - |
21.5328 | 2950 | 0.0 | - |
21.8978 | 3000 | 0.0 | - |
22.2628 | 3050 | 0.0 | - |
22.6277 | 3100 | 0.0 | - |
22.9927 | 3150 | 0.0 | - |
23.3577 | 3200 | 0.0 | - |
23.7226 | 3250 | 0.0 | - |
24.0876 | 3300 | 0.0 | - |
24.4526 | 3350 | 0.0 | - |
24.8175 | 3400 | 0.0 | - |
25.1825 | 3450 | 0.0 | - |
25.5474 | 3500 | 0.0 | - |
25.9124 | 3550 | 0.0 | - |
26.2774 | 3600 | 0.0 | - |
26.6423 | 3650 | 0.0 | - |
27.0073 | 3700 | 0.0 | - |
27.3723 | 3750 | 0.0 | - |
27.7372 | 3800 | 0.0 | - |
28.1022 | 3850 | 0.0 | - |
28.4672 | 3900 | 0.0 | - |
28.8321 | 3950 | 0.0 | - |
29.1971 | 4000 | 0.0 | - |
29.5620 | 4050 | 0.0 | - |
29.9270 | 4100 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}