SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '이유식 야채 큐브 다진야채 적양배추_유아기 출산/육아 > 이유식 > 이유식재료'
  • '오뚜기 어린이카레 80g 출산/육아 > 이유식 > 이유식재료'
  • '라온킴 다진야채 매일 만드는 이유식큐브 토핑 초기 중기 후기 완료 연근(껍질제거)_중기 출산/육아 > 이유식 > 이유식재료'
0.0
  • '[1+1 ] 아기퓨레 과일 무럭무럭 키즈죽 간식 중기 후기 파우치 실온이유식 12개월 단호박 1박스 + 바나나단호박 1박스 출산/육아 > 이유식 > 가공이유식'
  • '푸드트리 아기카레 덮밥소스 돌 두돌 아기반찬 유아반찬 유아식 소고기커리 아기덮밥 소스) A07 소고기 순한짜장 출산/육아 > 이유식 > 가공이유식'
  • '퓨어잇 아이김 3+3팩 골라담기 파래김/김과자 오가닉 아이김자반 3봉_유기농 김100% 3팩 출산/육아 > 이유식 > 가공이유식'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc25")
# Run inference
preds = model("알렉스앤필 6종 스웨덴 유기농 아기 이유식 과일퓨레 당근&망고 출산/육아 > 이유식 > 가공이유식")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 8 15.4286 23
Label Training Sample Count
0.0 70
1.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0357 1 0.4786 -
1.7857 50 0.2484 -
3.5714 100 0.0 -
5.3571 150 0.0 -
7.1429 200 0.0 -
8.9286 250 0.0 -
10.7143 300 0.0 -
12.5 350 0.0 -
14.2857 400 0.0 -
16.0714 450 0.0 -
17.8571 500 0.0 -
19.6429 550 0.0 -
21.4286 600 0.0 -
23.2143 650 0.0 -
25.0 700 0.0 -
26.7857 750 0.0 -
28.5714 800 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
16
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_bc25

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results