SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '아라칸 아기 물놀이 방수 기저귀 3개입 2세트 총 6매 출산/육아 > 기저귀 > 수영장기저귀'
  • '마미포코 물놀이팬티 4-5단계 (남녀선택) 12매 출산/육아 > 기저귀 > 수영장기저귀'
  • '밤보 물놀이 수영팬티 스몰 1팩(12P) 출산/육아 > 기저귀 > 수영장기저귀'
2.0
  • '나비잠 나비잠 울트라씬듀얼핏 팬티 6팩 출산/육아 > 기저귀 > 일회용기저귀'
  • '르소메 프리미엄 통잠 밤 아기 신생아 발진없는 밴드형 기저귀 2팩 출산/육아 > 기저귀 > 일회용기저귀'
  • '애플크럼비 [보리보리/애플크럼비]애플크럼비 NEW 오리지널 테이프 XL 6팩(108매) 출산/육아 > 기저귀 > 일회용기저귀'
3.0
  • '아가방 새싹오가닉 기저귀 5매 출산/육아 > 기저귀 > 천기저귀'
  • '베베라온 신생아 밤부 천기저귀 선물 체험 출산/육아 > 기저귀 > 천기저귀'
  • '투유모유 무형광 무나염 순면 국산 아기 천기저귀 2박스 구매시 파우치 증정 출산/육아 > 기저귀 > 천기저귀'
0.0
  • '[베이비앙] 국내산 무형광 사이즈 상관없이 벨크로 탈부착으로 사용 가능 기저귀 고정을 위한 천 기저귀밴드 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'
  • '처비체리 천기저귀 커버 쁘띠코숑 P tit Cochon 1개 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'
  • '포켓식 원사이즈 기저귀커버 3장세트(잠금장치&색상선택) 출산/육아 > 기저귀 > 기저귀커버/기저귀밴드'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc2")
# Run inference
preds = model("플라팜 뉴코코맘 아기 천기저귀 5매  출산/육아 > 기저귀 > 천기저귀")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 9 12.95 20
Label Training Sample Count
0.0 20
1.0 20
2.0 20
3.0 20

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.476 -
3.125 50 0.3608 -
6.25 100 0.0472 -
9.375 150 0.0 -
12.5 200 0.0 -
15.625 250 0.0 -
18.75 300 0.0 -
21.875 350 0.0 -
25.0 400 0.0 -
28.125 450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
473
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_bc2

Base model

klue/roberta-base
Finetuned
(213)
this model