SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
9.0
  • '투명 장난감 정리함 블럭 보관함 레고 듀플로 정리박스 토이박스 오픈형_그린 출산/육아 > 유아가구 > 장난감정리함'
  • '아기 장난감 정리함 곰 누빔 베이지 XL 출산/육아 > 유아가구 > 장난감정리함'
  • '이동식 장난감 정리함 수납함 바퀴 보관함 정리박스 상자 화이트 L 출산/육아 > 유아가구 > 장난감정리함'
6.0
  • '릿첼 베이비 소프트 의자 그레이 출산/육아 > 유아가구 > 유아이유식의자'
  • '[엔픽스] 비바체 하이체어_색상택1 화이트_화이트_베이지 출산/육아 > 유아가구 > 유아이유식의자'
  • '아기의자 하이체어 본베베 범보의자 트립트랩 이케아 S 출산/육아 > 유아가구 > 유아이유식의자'
5.0
  • '미용실 유아 의자 자동차 모양 어린이 좌석 인테리어 K_직경58cm 출산/육아 > 유아가구 > 유아의자'
  • '유아용 의자 어린이집 유치원 쿠션 쇼파 어린이소파 키즈카페 인테리어의자 골드와인레드_150x30x35cm 출산/육아 > 유아가구 > 유아의자'
  • '아동 어린이 유아 의자 등받이 간이 체어 유치원 어린이집 귀여운 플라스틱 경량 가벼운 대 그린 출산/육아 > 유아가구 > 유아의자'
2.0
  • '땅콩책상 유치원 학습용 도색 책상 및 의자 세트 아기 어린이 땅콩 테이블 04 83x50x60cm 4 출산/육아 > 유아가구 > 유아공부상'
  • '칼라 사각 1조각 좌식책상 어린이집 유치원 학원 유아 공부상 좌식테이블 대형 칼라(1200X600)_분홍_H350(중고성인)플라스틱다리 출산/육아 > 유아가구 > 유아공부상'
  • 'gvp 체스 출산/육아 > 유아가구 > 유아공부상'
8.0
  • '도노도노 튼튼 하이 라이트 멀티 범퍼침대 + 모달 토퍼세트 시어그레이_아이보리 출산/육아 > 유아가구 > 유아침대'
  • '꿈비 클린 변신 범퍼침대 유아 가드 아기 침대 트윈스타PLUS (매트+가드)_슈퍼특대형 하이가드 베이비룸 출산/육아 > 유아가구 > 유아침대'
  • '(개인맞춤) 파스텔 무지 100수 순면 누빔 싱글,슈퍼싱글 범퍼가드 (사이즈맞춤가능) 118x46 출산/육아 > 유아가구 > 유아침대'
3.0
  • '코아코아 뒹굴러 소파 래빗 출산/육아 > 유아가구 > 유아소파'
  • '코끼리 어린이 키즈 유아 용 어린이집 유치원 다용도 컬러 블럭 가구 양면 의자 소파 쇼파 블랙 출산/육아 > 유아가구 > 유아소파'
  • '디자인스킨 케이크 유아 소파 라이트 블루 출산/육아 > 유아가구 > 유아소파'
1.0
  • '3P 미끄럼방지 테이프 출산/육아 > 유아가구 > 기타유아가구'
  • '1+1 무지 베이지 우리 가족 놀이방 매트 200x 140x1.0cm 무지베이지 15T(2장) 출산/육아 > 유아가구 > 기타유아가구'
  • '어린이집 유치원 학원 투명 3단 약통 응급상자 구급약함 상비약보관함 약분류함 색상_투명3단구급함 핑크 출산/육아 > 유아가구 > 기타유아가구'
4.0
  • '프로그 아기 신생아 옷걸이 세트 (7+1) 미니 화이트 1set 출산/육아 > 유아가구 > 유아옷걸이'
  • '원목 햇님 2단 아기방 옷걸이 성탄절 아기방꾸미기 유아가구 키즈옷걸이 아기방가구 출산/육아 > 유아가구 > 유아옷걸이'
  • '재니홈 유아용 길이조절 옷걸이 핑크 x 10개 출산/육아 > 유아가구 > 유아옷걸이'
0.0
  • '[베이비앙] 출산축하선물세트 배냇저고리 손/발싸개 01.3종출산선물세트(구름이) 01.3종출산선물세트(구름이)_선물패키지(개별포장) 출산/육아 > 유아가구 > 기저귀정리함'
  • '생일답례품포장 선물포장용품 네임스티커 리본 등 A선택 B선택_B3-생일레인보우 컵6P 출산/육아 > 유아가구 > 기저귀정리함'
  • '보관함 접이식 유모차 뚜껑이 있는 PP 보드 냄새 없음 방 장난감 상자 옷 장, 대용량 01 yellow33cm 출산/육아 > 유아가구 > 기저귀정리함'
7.0
  • '토토 E0 등급 가로 600 세로 400 좌식테이블 티테이블 밥상 라운드형 출산/육아 > 유아가구 > 유아책상'
  • '학원 책상 의자 세트 공부용책상 용품 교육 의자-좌판색상_(YWBHS)카키 출산/육아 > 유아가구 > 유아책상'
  • '헬로 디노 테디 아기 유아 책상 의자 세트 테이블 공부상 헬로디노_1인용_레드 출산/육아 > 유아가구 > 유아책상'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc17")
# Run inference
preds = model("침대 오크 아이 접이식 유아용 바퀴 이동식 3번 출산/육아 > 유아가구 > 유아침대")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 14.68 26
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70
4.0 70
5.0 70
6.0 70
7.0 70
8.0 70
9.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0073 1 0.483 -
0.3650 50 0.4992 -
0.7299 100 0.378 -
1.0949 150 0.1514 -
1.4599 200 0.0531 -
1.8248 250 0.0383 -
2.1898 300 0.0279 -
2.5547 350 0.0177 -
2.9197 400 0.0109 -
3.2847 450 0.0113 -
3.6496 500 0.0056 -
4.0146 550 0.0001 -
4.3796 600 0.0001 -
4.7445 650 0.0 -
5.1095 700 0.0001 -
5.4745 750 0.0 -
5.8394 800 0.0 -
6.2044 850 0.0 -
6.5693 900 0.0 -
6.9343 950 0.0 -
7.2993 1000 0.0 -
7.6642 1050 0.0001 -
8.0292 1100 0.0 -
8.3942 1150 0.0 -
8.7591 1200 0.0 -
9.1241 1250 0.0 -
9.4891 1300 0.0 -
9.8540 1350 0.0 -
10.2190 1400 0.0 -
10.5839 1450 0.0 -
10.9489 1500 0.0 -
11.3139 1550 0.0 -
11.6788 1600 0.0 -
12.0438 1650 0.0 -
12.4088 1700 0.0 -
12.7737 1750 0.0 -
13.1387 1800 0.0 -
13.5036 1850 0.0 -
13.8686 1900 0.0 -
14.2336 1950 0.0 -
14.5985 2000 0.0 -
14.9635 2050 0.0 -
15.3285 2100 0.0 -
15.6934 2150 0.0 -
16.0584 2200 0.0 -
16.4234 2250 0.0 -
16.7883 2300 0.0 -
17.1533 2350 0.0 -
17.5182 2400 0.0 -
17.8832 2450 0.0 -
18.2482 2500 0.0 -
18.6131 2550 0.0 -
18.9781 2600 0.0 -
19.3431 2650 0.0 -
19.7080 2700 0.0 -
20.0730 2750 0.0 -
20.4380 2800 0.0 -
20.8029 2850 0.0 -
21.1679 2900 0.0 -
21.5328 2950 0.0 -
21.8978 3000 0.0 -
22.2628 3050 0.0 -
22.6277 3100 0.0 -
22.9927 3150 0.0 -
23.3577 3200 0.0 -
23.7226 3250 0.0 -
24.0876 3300 0.0 -
24.4526 3350 0.0 -
24.8175 3400 0.0 -
25.1825 3450 0.0 -
25.5474 3500 0.0 -
25.9124 3550 0.0 -
26.2774 3600 0.0 -
26.6423 3650 0.0 -
27.0073 3700 0.0 -
27.3723 3750 0.0 -
27.7372 3800 0.0 -
28.1022 3850 0.0 -
28.4672 3900 0.0 -
28.8321 3950 0.0 -
29.1971 4000 0.0 -
29.5620 4050 0.0 -
29.9270 4100 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
571
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_bc17

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results