Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 3.0 |
|
| 1.0 |
|
| 7.0 |
|
| 6.0 |
|
| 2.0 |
|
| 0.0 |
|
| 12.0 |
|
| 4.0 |
|
| 5.0 |
|
| 11.0 |
|
| 10.0 |
|
| 9.0 |
|
| 13.0 |
|
| 8.0 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc15")
# Run inference
preds = model("블루본 아이노우 미니 썸머라인 컬러 초소형 마스크 [10매] 스트랩일체형 민트 출산/육아 > 위생/건강용품 > 유아마스크")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 7 | 14.6957 | 34 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 70 |
| 6.0 | 20 |
| 7.0 | 70 |
| 8.0 | 70 |
| 9.0 | 70 |
| 10.0 | 70 |
| 11.0 | 70 |
| 12.0 | 70 |
| 13.0 | 70 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0055 | 1 | 0.493 | - |
| 0.2747 | 50 | 0.5 | - |
| 0.5495 | 100 | 0.4753 | - |
| 0.8242 | 150 | 0.1574 | - |
| 1.0989 | 200 | 0.0403 | - |
| 1.3736 | 250 | 0.0158 | - |
| 1.6484 | 300 | 0.0036 | - |
| 1.9231 | 350 | 0.0003 | - |
| 2.1978 | 400 | 0.0002 | - |
| 2.4725 | 450 | 0.0001 | - |
| 2.7473 | 500 | 0.0001 | - |
| 3.0220 | 550 | 0.0001 | - |
| 3.2967 | 600 | 0.0001 | - |
| 3.5714 | 650 | 0.0 | - |
| 3.8462 | 700 | 0.0 | - |
| 4.1209 | 750 | 0.0 | - |
| 4.3956 | 800 | 0.0 | - |
| 4.6703 | 850 | 0.0 | - |
| 4.9451 | 900 | 0.0 | - |
| 5.2198 | 950 | 0.0 | - |
| 5.4945 | 1000 | 0.0 | - |
| 5.7692 | 1050 | 0.0 | - |
| 6.0440 | 1100 | 0.0 | - |
| 6.3187 | 1150 | 0.0 | - |
| 6.5934 | 1200 | 0.0 | - |
| 6.8681 | 1250 | 0.0 | - |
| 7.1429 | 1300 | 0.0 | - |
| 7.4176 | 1350 | 0.0 | - |
| 7.6923 | 1400 | 0.0 | - |
| 7.9670 | 1450 | 0.0 | - |
| 8.2418 | 1500 | 0.0 | - |
| 8.5165 | 1550 | 0.0 | - |
| 8.7912 | 1600 | 0.0 | - |
| 9.0659 | 1650 | 0.0 | - |
| 9.3407 | 1700 | 0.0 | - |
| 9.6154 | 1750 | 0.0 | - |
| 9.8901 | 1800 | 0.0 | - |
| 10.1648 | 1850 | 0.0 | - |
| 10.4396 | 1900 | 0.0 | - |
| 10.7143 | 1950 | 0.0 | - |
| 10.9890 | 2000 | 0.0 | - |
| 11.2637 | 2050 | 0.0 | - |
| 11.5385 | 2100 | 0.0 | - |
| 11.8132 | 2150 | 0.0 | - |
| 12.0879 | 2200 | 0.0 | - |
| 12.3626 | 2250 | 0.0 | - |
| 12.6374 | 2300 | 0.0 | - |
| 12.9121 | 2350 | 0.0 | - |
| 13.1868 | 2400 | 0.0 | - |
| 13.4615 | 2450 | 0.0 | - |
| 13.7363 | 2500 | 0.0 | - |
| 14.0110 | 2550 | 0.0 | - |
| 14.2857 | 2600 | 0.0 | - |
| 14.5604 | 2650 | 0.0 | - |
| 14.8352 | 2700 | 0.0 | - |
| 15.1099 | 2750 | 0.0 | - |
| 15.3846 | 2800 | 0.0 | - |
| 15.6593 | 2850 | 0.0 | - |
| 15.9341 | 2900 | 0.0 | - |
| 16.2088 | 2950 | 0.0 | - |
| 16.4835 | 3000 | 0.0 | - |
| 16.7582 | 3050 | 0.0 | - |
| 17.0330 | 3100 | 0.0 | - |
| 17.3077 | 3150 | 0.0 | - |
| 17.5824 | 3200 | 0.0 | - |
| 17.8571 | 3250 | 0.0 | - |
| 18.1319 | 3300 | 0.0 | - |
| 18.4066 | 3350 | 0.0 | - |
| 18.6813 | 3400 | 0.0 | - |
| 18.9560 | 3450 | 0.0 | - |
| 19.2308 | 3500 | 0.0 | - |
| 19.5055 | 3550 | 0.0 | - |
| 19.7802 | 3600 | 0.0 | - |
| 20.0549 | 3650 | 0.0 | - |
| 20.3297 | 3700 | 0.0 | - |
| 20.6044 | 3750 | 0.0 | - |
| 20.8791 | 3800 | 0.0 | - |
| 21.1538 | 3850 | 0.0 | - |
| 21.4286 | 3900 | 0.0 | - |
| 21.7033 | 3950 | 0.0 | - |
| 21.9780 | 4000 | 0.0 | - |
| 22.2527 | 4050 | 0.0 | - |
| 22.5275 | 4100 | 0.0 | - |
| 22.8022 | 4150 | 0.0 | - |
| 23.0769 | 4200 | 0.0 | - |
| 23.3516 | 4250 | 0.0 | - |
| 23.6264 | 4300 | 0.0 | - |
| 23.9011 | 4350 | 0.0 | - |
| 24.1758 | 4400 | 0.0 | - |
| 24.4505 | 4450 | 0.0 | - |
| 24.7253 | 4500 | 0.0 | - |
| 25.0 | 4550 | 0.0 | - |
| 25.2747 | 4600 | 0.0 | - |
| 25.5495 | 4650 | 0.0 | - |
| 25.8242 | 4700 | 0.0 | - |
| 26.0989 | 4750 | 0.0 | - |
| 26.3736 | 4800 | 0.0 | - |
| 26.6484 | 4850 | 0.0 | - |
| 26.9231 | 4900 | 0.0 | - |
| 27.1978 | 4950 | 0.0 | - |
| 27.4725 | 5000 | 0.0 | - |
| 27.7473 | 5050 | 0.0 | - |
| 28.0220 | 5100 | 0.0 | - |
| 28.2967 | 5150 | 0.0 | - |
| 28.5714 | 5200 | 0.0 | - |
| 28.8462 | 5250 | 0.0 | - |
| 29.1209 | 5300 | 0.0 | - |
| 29.3956 | 5350 | 0.0 | - |
| 29.6703 | 5400 | 0.0 | - |
| 29.9451 | 5450 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}