mindwrapped
commited on
Commit
·
f221b87
1
Parent(s):
fd771cf
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value: 284.
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 284.19 +/- 19.62
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efda56945f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efda5694680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efda5694710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efda56947a0>", "_build": "<function ActorCriticPolicy._build at 0x7efda5694830>", "forward": "<function ActorCriticPolicy.forward at 0x7efda56948c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efda5694950>", "_predict": "<function ActorCriticPolicy._predict at 0x7efda56949e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efda5694a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efda5694b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efda5694b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efda56e7300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3500000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651876620.738418, "learning_rate": 0.0003, "tensorboard_log": "runs/ukc180ez", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4IDxxbRK5W56UuzJNdDhdmYM6CduFOQAAgD8AAAAAls3FPi+0IT90n6y+cN8Zv/Gy7D4+jnC+AAAAAAAAAACa6U88v1i2PyPooD4Ng+U9vC8nvDKC6LwAAAAAAAAAAHPvub0jIes+fuuEPse6vr7icIM89vkXPgAAAAAAAAAAOksDPsRVkT5i/Ba+MMravlp1hj1aAxi+AAAAAAAAAAAanUC9vXN6PrD92z1Glbu+rVvPPcIDIr0AAAAAAAAAAJozEL3TolQ/9nk9vL8R1r66L5+9AM2VPAAAAAAAAAAAwDErPtLLJD/DtCm+l2PhvowOUT1Gi6K9AAAAAAAAAADNi5y8bsa7P5KKnb7KpbI+2FGzupcuQb0AAAAAAAAAABrDKL336H0+ekQ0Psmd1b59MhQ+ELjUuQAAAAAAAAAAZuwHva4bibrDZR44d7u2MgFFE7sDUTe3AACAPwAAgD+zQ9G9bMZqP37hHzzukrS+FQZmvjLM0bsAAAAAAAAAAABA7jt0BGo/AFvnPWos9L5U2h49y3DfPQAAAAAAAAAADdbMvV/XkD+b2k2+0v7FvpJ9jb6zfmy9AAAAAAAAAAADaaU+v9MpPymtpb42nA+/drbLPsJVfr4AAAAAAAAAAJrq8zw4i8W7296AvImEgDwzCBq99cRaPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.3020416, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOQ8nMB3rc0CUhpRSlIwBbJRL4IwBdJRHQK921sY2sJZ1fZQoaAZoCWgPQwhIowIn21hwQJSGlFKUaBVL7GgWR0Cvdwy4nWrfdX2UKGgGaAloD0MI8NsQ4zWrcUCUhpRSlGgVS89oFkdAr3dxrJr+HnV9lChoBmgJaA9DCE2espru2HFAlIaUUpRoFUvUaBZHQK93sqS5iEx1fZQoaAZoCWgPQwjAB69d2vVxQJSGlFKUaBVL72gWR0Cvd7KqGUOedX2UKGgGaAloD0MIaLCp8+iXcUCUhpRSlGgVS91oFkdAr3fNuDSPVHV9lChoBmgJaA9DCE+uKZDZbnFAlIaUUpRoFUvWaBZHQK93126kIop1fZQoaAZoCWgPQwhwP+CBAXZvQJSGlFKUaBVL52gWR0Cvd9WDg62fdX2UKGgGaAloD0MIJZNTO0NVc0CUhpRSlGgVS+xoFkdAr3ffm/336HV9lChoBmgJaA9DCGuCqPuAjXBAlIaUUpRoFUvgaBZHQK94F2IwdsB1fZQoaAZoCWgPQwi8lSU6iyhzQJSGlFKUaBVL2GgWR0CveCDgIhQndX2UKGgGaAloD0MIV7Q5zm2UckCUhpRSlGgVS+FoFkdAr3g4yAQQMHV9lChoBmgJaA9DCNcYdEKoeHJAlIaUUpRoFUvbaBZHQK94luVHFxZ1fZQoaAZoCWgPQwjFrBdDuaNxQJSGlFKUaBVL2WgWR0CveSMFt8/mdX2UKGgGaAloD0MI+daH9YbMcUCUhpRSlGgVS89oFkdAr3lVLDhtL3V9lChoBmgJaA9DCH0DkxvF5nJAlIaUUpRoFUvLaBZHQK95oWSEDhd1fZQoaAZoCWgPQwj7OnDOiAp0QJSGlFKUaBVL0GgWR0CvecNhE0BPdX2UKGgGaAloD0MIR4/f23QFckCUhpRSlGgVS9VoFkdAr3oOJSBK+XV9lChoBmgJaA9DCNS19j7VVXJAlIaUUpRoFUvGaBZHQK96jgiu+yt1fZQoaAZoCWgPQwi/RLx1/hJzQJSGlFKUaBVL2GgWR0CverNZV4ordX2UKGgGaAloD0MI5BHcSFlubkCUhpRSlGgVS9loFkdAr3q33SKFZnV9lChoBmgJaA9DCAUyO4tet29AlIaUUpRoFUvXaBZHQK961SpBHCp1fZQoaAZoCWgPQwgs8uuHWHByQJSGlFKUaBVL1WgWR0CvetYz7/GVdX2UKGgGaAloD0MICeBm8WKpckCUhpRSlGgVS+FoFkdAr3rul9BrvnV9lChoBmgJaA9DCO1HisiwNnFAlIaUUpRoFUvRaBZHQK97AfMfRu11fZQoaAZoCWgPQwhq3JvfsBpvQJSGlFKUaBVNEwFoFkdAr3tJjz7MxHV9lChoBmgJaA9DCJSkayZfQ3NAlIaUUpRoFUvmaBZHQK97dkoWpId1fZQoaAZoCWgPQwivCz84H/NxQJSGlFKUaBVL/2gWR0Cve7OwgTysdX2UKGgGaAloD0MIqn8QydBCcECUhpRSlGgVS+hoFkdAr3ve/Dcdo3V9lChoBmgJaA9DCCdPWU1Xrm9AlIaUUpRoFUvkaBZHQK98Zk2gnMN1fZQoaAZoCWgPQwhdwqG3uHBxQJSGlFKUaBVL9GgWR0CvfNgzP8htdX2UKGgGaAloD0MIX5fhP13ecUCUhpRSlGgVS+doFkdAr3z1R3u/lHV9lChoBmgJaA9DCCb/k787enJAlIaUUpRoFUvUaBZHQK99GpAlfJF1fZQoaAZoCWgPQwi/8EqSp85xQJSGlFKUaBVL/WgWR0CvfW4HX2/SdX2UKGgGaAloD0MIr30BvXDMcUCUhpRSlGgVS8toFkdAr319SwW30HV9lChoBmgJaA9DCFosRfJV+nBAlIaUUpRoFUvKaBZHQK99unrpqyp1fZQoaAZoCWgPQwh9CRUc3kpvQJSGlFKUaBVL1WgWR0CvfcUt7KJVdX2UKGgGaAloD0MIQGzp0VQnc0CUhpRSlGgVS8xoFkdAr33vRRdhRnV9lChoBmgJaA9DCOHtQQiImHJAlIaUUpRoFUvqaBZHQK9+DvMKTjh1fZQoaAZoCWgPQwiXOsjrgZNyQJSGlFKUaBVL8WgWR0CvfkG6GxlhdX2UKGgGaAloD0MIgXhdv+B6cUCUhpRSlGgVS89oFkdAr35BuO0b+HV9lChoBmgJaA9DCKZ9c3/1+nBAlIaUUpRoFUvraBZHQK9+TloUSIx1fZQoaAZoCWgPQwjajT7mA19uQJSGlFKUaBVLyWgWR0CvflVTrE9/dX2UKGgGaAloD0MIll6bjRUWcUCUhpRSlGgVS9hoFkdAr368gW8AaXV9lChoBmgJaA9DCB9I3jmUl3BAlIaUUpRoFUvwaBZHQK9/Og7HQyB1fZQoaAZoCWgPQwgSTgtedLpxQJSGlFKUaBVL3WgWR0Cvf4Xr+o9+dX2UKGgGaAloD0MILNMvEW+fcUCUhpRSlGgVS81oFkdAr3/aQxN7B3V9lChoBmgJaA9DCGLX9nbLDHRAlIaUUpRoFUvXaBZHQK+AKIuXeFd1fZQoaAZoCWgPQwiL+iR32ExvQJSGlFKUaBVLxWgWR0CvgDZCWu5jdX2UKGgGaAloD0MInS/2XvySckCUhpRSlGgVS+9oFkdAr4BBeu3c6HV9lChoBmgJaA9DCINQ3seRGnNAlIaUUpRoFUvPaBZHQK+AaKtPpIN1fZQoaAZoCWgPQwjMft3pjphwQJSGlFKUaBVL2WgWR0CvgMGsmv4edX2UKGgGaAloD0MI/kY7bvhZcUCUhpRSlGgVS9xoFkdAr4DUdPtUoHV9lChoBmgJaA9DCGcmGM7173FAlIaUUpRoFUvKaBZHQK+BHEYwZfl1fZQoaAZoCWgPQwiWy0bn/EZyQJSGlFKUaBVL52gWR0Cvj3T6zmfXdX2UKGgGaAloD0MInUZaKq+8ckCUhpRSlGgVS9poFkdAr497eoDPnnV9lChoBmgJaA9DCI7MI38wKXBAlIaUUpRoFUvdaBZHQK+PkXzDn/11fZQoaAZoCWgPQwgW3XpNz+hzQJSGlFKUaBVL5WgWR0Cvj6Q1JlJ6dX2UKGgGaAloD0MIZ9XnausJckCUhpRSlGgVTQYBaBZHQK+Qmvllsgx1fZQoaAZoCWgPQwhWvJF5pG1xQJSGlFKUaBVL4WgWR0CvkJo+fRNRdX2UKGgGaAloD0MIL+Blhk2gc0CUhpRSlGgVS8doFkdAr5DUJ4SpSHV9lChoBmgJaA9DCMyZ7Qp9eG9AlIaUUpRoFUvpaBZHQK+RBkMkQf91fZQoaAZoCWgPQwj3zf3V4wpyQJSGlFKUaBVLymgWR0CvkSlg+hXbdX2UKGgGaAloD0MI+s+aH79qcUCUhpRSlGgVS8poFkdAr5E1q+JxenV9lChoBmgJaA9DCF7WxAJfvHJAlIaUUpRoFU1rAWgWR0CvkTVLSNOudX2UKGgGaAloD0MI0gDeAklDc0CUhpRSlGgVS81oFkdAr5HVuivgWXV9lChoBmgJaA9DCPZDbLAwSnFAlIaUUpRoFU0EAWgWR0Cvkh9dE9dNdX2UKGgGaAloD0MIm5DWGLQZckCUhpRSlGgVS/xoFkdAr5Irnied1HV9lChoBmgJaA9DCE/ltKck0XJAlIaUUpRoFUvmaBZHQK+SUnm7rcF1fZQoaAZoCWgPQwi2aWyvBbdxQJSGlFKUaBVL4WgWR0Cvkn+/pMYedX2UKGgGaAloD0MIJCao4RsocUCUhpRSlGgVS+NoFkdAr5K9wm3OOnV9lChoBmgJaA9DCBnKiXYVVm9AlIaUUpRoFUvcaBZHQK+S0n0Cih51fZQoaAZoCWgPQwjj4xOys1RxQJSGlFKUaBVL9WgWR0CvkvmsNlRQdX2UKGgGaAloD0MIVn4ZjNEycUCUhpRSlGgVS+5oFkdAr5L+so2GZnV9lChoBmgJaA9DCKq6RzYXkHFAlIaUUpRoFUvRaBZHQK+TphZyMk11fZQoaAZoCWgPQwgVi98UVrtyQJSGlFKUaBVLxWgWR0Cvk+ccuJ1rdX2UKGgGaAloD0MINfCjGnbvbkCUhpRSlGgVS+RoFkdAr5Py3LFGX3V9lChoBmgJaA9DCPC/lexYVW5AlIaUUpRoFUveaBZHQK+UELThHb11fZQoaAZoCWgPQwhxAtNpndlxQJSGlFKUaBVL2mgWR0CvlFrG7z06dX2UKGgGaAloD0MIj95wHzkvc0CUhpRSlGgVS9doFkdAr5RdJYkmhXV9lChoBmgJaA9DCLw7MlYb3nBAlIaUUpRoFUvbaBZHQK+UahsZYPp1fZQoaAZoCWgPQwhYHM78qqtwQJSGlFKUaBVL12gWR0CvlQNyxRl6dX2UKGgGaAloD0MIGCE82nhvckCUhpRSlGgVS81oFkdAr5UjbDdgv3V9lChoBmgJaA9DCCXqBZ/mwXBAlIaUUpRoFUvSaBZHQK+VbQAMlTp1fZQoaAZoCWgPQwiaXfdWZPBxQJSGlFKUaBVLu2gWR0CvlY26shgWdX2UKGgGaAloD0MIU0Kwqp5oc0CUhpRSlGgVS/9oFkdAr5XzLbHp8nV9lChoBmgJaA9DCISfOIA+0nBAlIaUUpRoFUvWaBZHQK+WMfDDTBt1fZQoaAZoCWgPQwhckgN2dXFzQJSGlFKUaBVL6GgWR0CvloD2i+L4dX2UKGgGaAloD0MIofMau4TtcUCUhpRSlGgVS/poFkdAr5afphWo33V9lChoBmgJaA9DCIQu4dAbtnFAlIaUUpRoFUveaBZHQK+XaBXCCSR1fZQoaAZoCWgPQwh6G5sdqfVyQJSGlFKUaBVL2mgWR0Cvl3yVfNRndX2UKGgGaAloD0MI+U7MejG4cECUhpRSlGgVS/doFkdAr5eGLiuMdnV9lChoBmgJaA9DCF+3CIy1OXFAlIaUUpRoFUvRaBZHQK+Xp7b+Lm91fZQoaAZoCWgPQwjbMXVXth5yQJSGlFKUaBVL12gWR0Cvl9NHhCMQdX2UKGgGaAloD0MIMnVXdoFPc0CUhpRSlGgVS/5oFkdAr5fiG+K0lnV9lChoBmgJaA9DCKacL/ZetHBAlIaUUpRoFUvxaBZHQK+YKlt0mt11fZQoaAZoCWgPQwjXiGAcXBtvQJSGlFKUaBVLyGgWR0CvmDV/DtPYdX2UKGgGaAloD0MIyJQPQdWdc0CUhpRSlGgVS89oFkdAr5hugctGu3V9lChoBmgJaA9DCH7FGi4y4HFAlIaUUpRoFUvdaBZHQK+Y5T5wfhd1fZQoaAZoCWgPQwhIqYQn9FVuQJSGlFKUaBVL12gWR0CvmO+JP69CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 852, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4bc30cc950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4bc30cc9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4bc30cca70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4bc30ccb00>", "_build": "<function ActorCriticPolicy._build at 0x7f4bc30ccb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f4bc30ccc20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4bc30cccb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4bc30ccd40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4bc30ccdd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4bc30cce60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4bc30ccef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4bc3110d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2800000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653014073.8073924, "learning_rate": 0.0003, "tensorboard_log": "runs/mf2el1p0", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2KGL174Ji6KlRVPIzCBTZrOvm6oLQBNQAAAAAAAAAAIKBEvqU2jD/qDAm/4MYPvwDiq77DSZe+AAAAAAAAAAAz9389rC2SPwovTT4Ol/O+btoYPrY3LD0AAAAAAAAAADPJ9b37ciY/XrTgPSSe976yTcq9BsnOPQAAAAAAAAAAxgIZPi/4dj/YdX49IMr0vtTMmT4WR/y9AAAAAAAAAADAFek9NekgPmjPd77u4eO+LMbnvfSQlbwAAAAAAAAAAM1+prwvQhU/Qu65vYtv6r44iKa7DkoqvQAAAAAAAAAAZoo6PCkUY7q45ls57/hTNAOy7LoF1YC4AACAPwAAgD+agVq75N21P0qvrL0+MZA9y3J5Ox28mjwAAAAAAAAAAACzu7zhHIy6ShPZtIJ38q+nHMa6oTohNAAAgD8AAIA/M+NmOylAMbrDvxy7tuaNPIwNmzrVone9AACAPwAAgD+a4R+8PVwlu+i6Uzu1UJU8vNALPDKZgL0AAIA/AACAPzOxsbyzHD4/2hG2vZqK7748Ohm9gJ0OvQAAAAAAAAAAAGI9vOwYzrviRWQ+olCYPAQfRL1yp389AACAPwAAgD/zAQm+ogsIP0bIYj5GIO++TmCDvXpujz0AAAAAAAAAAAAwCDspokk7siTgvXwHhL6T4h++w/WVPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.07157333333333338, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgq0SLE4HcECUhpRSlIwBbJRL5owBdJRHQKEacw5/9YR1fZQoaAZoCWgPQwgQIEPHDpBxQJSGlFKUaBVLymgWR0ChGqY/Vy3kdX2UKGgGaAloD0MIBYcXRCTnbkCUhpRSlGgVS9VoFkdAoRrKNKh+OXV9lChoBmgJaA9DCJqYLsRqe3FAlIaUUpRoFUvHaBZHQKEbAMIeHSF1fZQoaAZoCWgPQwjjpgaaD5lyQJSGlFKUaBVLy2gWR0ChGzF9KEnLdX2UKGgGaAloD0MIkq8EUqKWcUCUhpRSlGgVS/NoFkdAoRtjpgTh53V9lChoBmgJaA9DCCy4H/AA/HJAlIaUUpRoFUvbaBZHQKEbqRTS9dx1fZQoaAZoCWgPQwhtIF1sWvBwQJSGlFKUaBVL5WgWR0ChG67RF7UodX2UKGgGaAloD0MI1UDzOXd9ckCUhpRSlGgVS+NoFkdAoRvJydWhiHV9lChoBmgJaA9DCPEPW3p0r3JAlIaUUpRoFUvKaBZHQKEb6oddVvN1fZQoaAZoCWgPQwj7OnDOyFdxQJSGlFKUaBVLy2gWR0ChHBFq8DjjdX2UKGgGaAloD0MIxlIkXwnFc0CUhpRSlGgVS/VoFkdAoRwsmv4dqHV9lChoBmgJaA9DCAADQYDM5XJAlIaUUpRoFUvyaBZHQKEcMsNDtw91fZQoaAZoCWgPQwgMW7OVFy9xQJSGlFKUaBVLzWgWR0ChHEQHZ9NOdX2UKGgGaAloD0MIP+YDAh2JcUCUhpRSlGgVS85oFkdAoRyWJFb3XnV9lChoBmgJaA9DCCxHyECe2nNAlIaUUpRoFUvZaBZHQKEcmMm4RVZ1fZQoaAZoCWgPQwjnb0IhgrBuQJSGlFKUaBVL12gWR0ChHJ5fUnXvdX2UKGgGaAloD0MIN1X3yGY2cUCUhpRSlGgVS8FoFkdAoRzJUtI07HV9lChoBmgJaA9DCKm8HeG0xnBAlIaUUpRoFUvTaBZHQKEc0W/JvHd1fZQoaAZoCWgPQwg0uRgD69hyQJSGlFKUaBVL0mgWR0ChHU0SAYpEdX2UKGgGaAloD0MISn1Z2ikKbkCUhpRSlGgVS+hoFkdAoR1d6/qPfnV9lChoBmgJaA9DCMqNImvN9nJAlIaUUpRoFUvSaBZHQKEdfpwCKaZ1fZQoaAZoCWgPQwhf7pOjwG1xQJSGlFKUaBVLzGgWR0ChHbP6j323dX2UKGgGaAloD0MIu3zrwzpHc0CUhpRSlGgVS+JoFkdAoR3kYl6Z6XV9lChoBmgJaA9DCBCWsaEbBm9AlIaUUpRoFUvQaBZHQKEd9SG8Emp1fZQoaAZoCWgPQwjzyYrhaoZyQJSGlFKUaBVL6mgWR0ChHhq+zt1IdX2UKGgGaAloD0MIttlYifmVcUCUhpRSlGgVS+loFkdAoR5qEcsDn3V9lChoBmgJaA9DCOPhPQcWSXNAlIaUUpRoFUvkaBZHQKEefOi35N51fZQoaAZoCWgPQwjmPGNfMj1wQJSGlFKUaBVL7WgWR0ChHpFQMx46dX2UKGgGaAloD0MI6xwDsleLc0CUhpRSlGgVS+toFkdAoR6m7xusLnV9lChoBmgJaA9DCIqQup09h3JAlIaUUpRoFUvNaBZHQKEesREnb7F1fZQoaAZoCWgPQwhyNh0B3GFyQJSGlFKUaBVL2WgWR0ChHtTQE6kqdX2UKGgGaAloD0MIZHjsZ3Fmc0CUhpRSlGgVS91oFkdAoR7YU34sVnV9lChoBmgJaA9DCNzxJr/FRHJAlIaUUpRoFUvuaBZHQKEka2qDK5l1fZQoaAZoCWgPQwhsX0Av3FdzQJSGlFKUaBVL7WgWR0ChJHT9sJpndX2UKGgGaAloD0MIzXSvkzqqcUCUhpRSlGgVS8ZoFkdAoSSQgzP8h3V9lChoBmgJaA9DCOHra13qvHJAlIaUUpRoFUvNaBZHQKEkr1ie/Yd1fZQoaAZoCWgPQwhoBYasLlhyQJSGlFKUaBVLx2gWR0ChJL8Co0hvdX2UKGgGaAloD0MIs5dtpy0mb0CUhpRSlGgVS89oFkdAoSUR+hGpdnV9lChoBmgJaA9DCKs97IUCZ1ZAlIaUUpRoFUuQaBZHQKElHLSuyNZ1fZQoaAZoCWgPQwhyxFp8SuxyQJSGlFKUaBVLvWgWR0ChJSrvTgEVdX2UKGgGaAloD0MIjbYqiWzNcECUhpRSlGgVS9loFkdAoSVi4x1xKnV9lChoBmgJaA9DCEt1AS9zN3NAlIaUUpRoFUvIaBZHQKElb3/Pw/h1fZQoaAZoCWgPQwjBV3TrdVdyQJSGlFKUaBVLxmgWR0ChJeY0Mw10dX2UKGgGaAloD0MIjukJS3wkcUCUhpRSlGgVS9ZoFkdAoSX0DSw4bXV9lChoBmgJaA9DCHF2a5nM6XNAlIaUUpRoFUvraBZHQKEmGPfbblB1fZQoaAZoCWgPQwj/zCA+sJBzQJSGlFKUaBVL5GgWR0ChJit03fhudX2UKGgGaAloD0MIrrfNVEjccUCUhpRSlGgVS9ZoFkdAoSY56D5CW3V9lChoBmgJaA9DCFlpUgr6XnBAlIaUUpRoFUvcaBZHQKEmRkvsZ511fZQoaAZoCWgPQwjp19ZP/8hxQJSGlFKUaBVL12gWR0ChJqJD/lySdX2UKGgGaAloD0MIYTjXMEN4cUCUhpRSlGgVS8xoFkdAoSanhfjS5XV9lChoBmgJaA9DCOmedY0WcG5AlIaUUpRoFUvNaBZHQKEmy1UEPlN1fZQoaAZoCWgPQwg8LxUb81FvQJSGlFKUaBVL4mgWR0ChJxQDNhVmdX2UKGgGaAloD0MICHWRQln5cECUhpRSlGgVS8toFkdAoScxCD28I3V9lChoBmgJaA9DCB8vpMNDQW9AlIaUUpRoFUvQaBZHQKEnNAzHjp91fZQoaAZoCWgPQwi+S6lLRmRzQJSGlFKUaBVNJQFoFkdAoSdxu89Oh3V9lChoBmgJaA9DCEUqjC1E03FAlIaUUpRoFUvMaBZHQKEne4zabnZ1fZQoaAZoCWgPQwjbwB2oU8hvQJSGlFKUaBVL5WgWR0ChJ36/h2nsdX2UKGgGaAloD0MIDAQBMrTyckCUhpRSlGgVTQkBaBZHQKEoAfYjB2x1fZQoaAZoCWgPQwjrAfOQqclvQJSGlFKUaBVL1WgWR0ChKAHSv1UVdX2UKGgGaAloD0MInaBNDh8mcUCUhpRSlGgVS8xoFkdAoSgrMJQcgnV9lChoBmgJaA9DCKfNOA2RXnBAlIaUUpRoFUvMaBZHQKEoNyLAHml1fZQoaAZoCWgPQwhI+rSKfoFyQJSGlFKUaBVL2GgWR0ChKDc94eLfdX2UKGgGaAloD0MI/p3t0VsOckCUhpRSlGgVS+poFkdAoSg/jENvwXV9lChoBmgJaA9DCKOTpda7JXNAlIaUUpRoFUvWaBZHQKEoXupCKJl1fZQoaAZoCWgPQwgnoImwoatxQJSGlFKUaBVLy2gWR0ChKJh3JPqLdX2UKGgGaAloD0MIBYcXRCRpcUCUhpRSlGgVS+VoFkdAoSjQIMSbpnV9lChoBmgJaA9DCILjMm7q/HBAlIaUUpRoFUvZaBZHQKEo2VuaWop1fZQoaAZoCWgPQwh/iXjr/L5yQJSGlFKUaBVLtmgWR0ChKSrV4HHFdX2UKGgGaAloD0MINNb+zjYCckCUhpRSlGgVS9xoFkdAoSlADzRQanV9lChoBmgJaA9DCNf7jXZcdHNAlIaUUpRoFUveaBZHQKEpQhDgIhR1fZQoaAZoCWgPQwiKc9TRMS9yQJSGlFKUaBVL8mgWR0ChKVdc0LtvdX2UKGgGaAloD0MI0VeQZmz3cUCUhpRSlGgVS9RoFkdAoSlmz0HyE3V9lChoBmgJaA9DCEG7Q4oBpVFAlIaUUpRoFUuLaBZHQKEphrcCYC11fZQoaAZoCWgPQwhYVS+/ExdzQJSGlFKUaBVL4WgWR0ChKYrl/6O6dX2UKGgGaAloD0MImu0KfXBZcUCUhpRSlGgVS8poFkdAoSnVgfEGaHV9lChoBmgJaA9DCAFsQIS46m5AlIaUUpRoFUvUaBZHQKEp6d7OVxF1fZQoaAZoCWgPQwjylNV0/fNxQJSGlFKUaBVL12gWR0ChKiCt7rs0dX2UKGgGaAloD0MIFxIwurw9c0CUhpRSlGgVS9doFkdAoSowr+YMOXV9lChoBmgJaA9DCAeVuI6xCXJAlIaUUpRoFUvnaBZHQKEqVVNpM6B1fZQoaAZoCWgPQwgIA8+9h/1vQJSGlFKUaBVL6GgWR0ChKnuC5EtvdX2UKGgGaAloD0MId2ouN5g3b0CUhpRSlGgVS81oFkdAoSquY0EX+HV9lChoBmgJaA9DCPt1pzvPV3JAlIaUUpRoFU0EAWgWR0ChKvoTGo73dX2UKGgGaAloD0MIKzI6IEk5cUCUhpRSlGgVS+xoFkdAoSsDW3BpH3V9lChoBmgJaA9DCIi6D0CqynFAlIaUUpRoFUvBaBZHQKErBkZJkG11fZQoaAZoCWgPQwjNHmgFRjtyQJSGlFKUaBVLzGgWR0ChKwtBfKISdX2UKGgGaAloD0MIHQBxV69BcUCUhpRSlGgVS9JoFkdAoSsukHlfZ3V9lChoBmgJaA9DCEksKXffrXFAlIaUUpRoFUvgaBZHQKErXgx8D0V1fZQoaAZoCWgPQwic3O9QFEFwQJSGlFKUaBVL2WgWR0ChK1+qrBCVdX2UKGgGaAloD0MIpSxDHOv3cUCUhpRSlGgVS9poFkdAoSuDCWNWEXV9lChoBmgJaA9DCGvVrglps29AlIaUUpRoFUvZaBZHQKErhhXKbKB1fZQoaAZoCWgPQwiCV8udmVlxQJSGlFKUaBVL12gWR0ChK85/smfHdX2UKGgGaAloD0MIzEQRUvcOcUCUhpRSlGgVS+1oFkdAoSwnRRdhRnV9lChoBmgJaA9DCOnVAKUhxm9AlIaUUpRoFUvgaBZHQKEsO/bj94x1fZQoaAZoCWgPQwi5+rFJ/q1yQJSGlFKUaBVL0WgWR0ChLEos7MgVdX2UKGgGaAloD0MIWABTBo5OcUCUhpRSlGgVS8poFkdAoSxgVsUIs3V9lChoBmgJaA9DCL06x4Bs0XFAlIaUUpRoFUv1aBZHQKEsfdVvMr51fZQoaAZoCWgPQwjRIXAkUIJvQJSGlFKUaBVL12gWR0ChLLeuFHrhdX2UKGgGaAloD0MI6GnAIOm+UUCUhpRSlGgVS45oFkdAoSy8xdpqRHV9lChoBmgJaA9DCGST/Ijf33FAlIaUUpRoFUvLaBZHQKEs95AQg9x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 680, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c54d95c90fb001d09d744526125ff8b3139593fa9f938b1fa68ed9f8e773cc2
|
3 |
+
size 143612
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,25 +4,25 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,28 +35,28 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log": "runs/
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": 0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4bc30cc950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4bc30cc9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4bc30cca70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4bc30ccb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4bc30ccb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4bc30ccc20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4bc30cccb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4bc30ccd40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4bc30ccdd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4bc30cce60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4bc30ccef0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4bc3110d20>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2800000,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1653014073.8073924,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/mf2el1p0",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2KGL174Ji6KlRVPIzCBTZrOvm6oLQBNQAAAAAAAAAAIKBEvqU2jD/qDAm/4MYPvwDiq77DSZe+AAAAAAAAAAAz9389rC2SPwovTT4Ol/O+btoYPrY3LD0AAAAAAAAAADPJ9b37ciY/XrTgPSSe976yTcq9BsnOPQAAAAAAAAAAxgIZPi/4dj/YdX49IMr0vtTMmT4WR/y9AAAAAAAAAADAFek9NekgPmjPd77u4eO+LMbnvfSQlbwAAAAAAAAAAM1+prwvQhU/Qu65vYtv6r44iKa7DkoqvQAAAAAAAAAAZoo6PCkUY7q45ls57/hTNAOy7LoF1YC4AACAPwAAgD+agVq75N21P0qvrL0+MZA9y3J5Ox28mjwAAAAAAAAAAACzu7zhHIy6ShPZtIJ38q+nHMa6oTohNAAAgD8AAIA/M+NmOylAMbrDvxy7tuaNPIwNmzrVone9AACAPwAAgD+a4R+8PVwlu+i6Uzu1UJU8vNALPDKZgL0AAIA/AACAPzOxsbyzHD4/2hG2vZqK7748Ohm9gJ0OvQAAAAAAAAAAAGI9vOwYzrviRWQ+olCYPAQfRL1yp389AACAPwAAgD/zAQm+ogsIP0bIYj5GIO++TmCDvXpujz0AAAAAAAAAAAAwCDspokk7siTgvXwHhL6T4h++w/WVPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.07157333333333338,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgq0SLE4HcECUhpRSlIwBbJRL5owBdJRHQKEacw5/9YR1fZQoaAZoCWgPQwgQIEPHDpBxQJSGlFKUaBVLymgWR0ChGqY/Vy3kdX2UKGgGaAloD0MIBYcXRCTnbkCUhpRSlGgVS9VoFkdAoRrKNKh+OXV9lChoBmgJaA9DCJqYLsRqe3FAlIaUUpRoFUvHaBZHQKEbAMIeHSF1fZQoaAZoCWgPQwjjpgaaD5lyQJSGlFKUaBVLy2gWR0ChGzF9KEnLdX2UKGgGaAloD0MIkq8EUqKWcUCUhpRSlGgVS/NoFkdAoRtjpgTh53V9lChoBmgJaA9DCCy4H/AA/HJAlIaUUpRoFUvbaBZHQKEbqRTS9dx1fZQoaAZoCWgPQwhtIF1sWvBwQJSGlFKUaBVL5WgWR0ChG67RF7UodX2UKGgGaAloD0MI1UDzOXd9ckCUhpRSlGgVS+NoFkdAoRvJydWhiHV9lChoBmgJaA9DCPEPW3p0r3JAlIaUUpRoFUvKaBZHQKEb6oddVvN1fZQoaAZoCWgPQwj7OnDOyFdxQJSGlFKUaBVLy2gWR0ChHBFq8DjjdX2UKGgGaAloD0MIxlIkXwnFc0CUhpRSlGgVS/VoFkdAoRwsmv4dqHV9lChoBmgJaA9DCAADQYDM5XJAlIaUUpRoFUvyaBZHQKEcMsNDtw91fZQoaAZoCWgPQwgMW7OVFy9xQJSGlFKUaBVLzWgWR0ChHEQHZ9NOdX2UKGgGaAloD0MIP+YDAh2JcUCUhpRSlGgVS85oFkdAoRyWJFb3XnV9lChoBmgJaA9DCCxHyECe2nNAlIaUUpRoFUvZaBZHQKEcmMm4RVZ1fZQoaAZoCWgPQwjnb0IhgrBuQJSGlFKUaBVL12gWR0ChHJ5fUnXvdX2UKGgGaAloD0MIN1X3yGY2cUCUhpRSlGgVS8FoFkdAoRzJUtI07HV9lChoBmgJaA9DCKm8HeG0xnBAlIaUUpRoFUvTaBZHQKEc0W/JvHd1fZQoaAZoCWgPQwg0uRgD69hyQJSGlFKUaBVL0mgWR0ChHU0SAYpEdX2UKGgGaAloD0MISn1Z2ikKbkCUhpRSlGgVS+hoFkdAoR1d6/qPfnV9lChoBmgJaA9DCMqNImvN9nJAlIaUUpRoFUvSaBZHQKEdfpwCKaZ1fZQoaAZoCWgPQwhf7pOjwG1xQJSGlFKUaBVLzGgWR0ChHbP6j323dX2UKGgGaAloD0MIu3zrwzpHc0CUhpRSlGgVS+JoFkdAoR3kYl6Z6XV9lChoBmgJaA9DCBCWsaEbBm9AlIaUUpRoFUvQaBZHQKEd9SG8Emp1fZQoaAZoCWgPQwjzyYrhaoZyQJSGlFKUaBVL6mgWR0ChHhq+zt1IdX2UKGgGaAloD0MIttlYifmVcUCUhpRSlGgVS+loFkdAoR5qEcsDn3V9lChoBmgJaA9DCOPhPQcWSXNAlIaUUpRoFUvkaBZHQKEefOi35N51fZQoaAZoCWgPQwjmPGNfMj1wQJSGlFKUaBVL7WgWR0ChHpFQMx46dX2UKGgGaAloD0MI6xwDsleLc0CUhpRSlGgVS+toFkdAoR6m7xusLnV9lChoBmgJaA9DCIqQup09h3JAlIaUUpRoFUvNaBZHQKEesREnb7F1fZQoaAZoCWgPQwhyNh0B3GFyQJSGlFKUaBVL2WgWR0ChHtTQE6kqdX2UKGgGaAloD0MIZHjsZ3Fmc0CUhpRSlGgVS91oFkdAoR7YU34sVnV9lChoBmgJaA9DCNzxJr/FRHJAlIaUUpRoFUvuaBZHQKEka2qDK5l1fZQoaAZoCWgPQwhsX0Av3FdzQJSGlFKUaBVL7WgWR0ChJHT9sJpndX2UKGgGaAloD0MIzXSvkzqqcUCUhpRSlGgVS8ZoFkdAoSSQgzP8h3V9lChoBmgJaA9DCOHra13qvHJAlIaUUpRoFUvNaBZHQKEkr1ie/Yd1fZQoaAZoCWgPQwhoBYasLlhyQJSGlFKUaBVLx2gWR0ChJL8Co0hvdX2UKGgGaAloD0MIs5dtpy0mb0CUhpRSlGgVS89oFkdAoSUR+hGpdnV9lChoBmgJaA9DCKs97IUCZ1ZAlIaUUpRoFUuQaBZHQKElHLSuyNZ1fZQoaAZoCWgPQwhyxFp8SuxyQJSGlFKUaBVLvWgWR0ChJSrvTgEVdX2UKGgGaAloD0MIjbYqiWzNcECUhpRSlGgVS9loFkdAoSVi4x1xKnV9lChoBmgJaA9DCEt1AS9zN3NAlIaUUpRoFUvIaBZHQKElb3/Pw/h1fZQoaAZoCWgPQwjBV3TrdVdyQJSGlFKUaBVLxmgWR0ChJeY0Mw10dX2UKGgGaAloD0MIjukJS3wkcUCUhpRSlGgVS9ZoFkdAoSX0DSw4bXV9lChoBmgJaA9DCHF2a5nM6XNAlIaUUpRoFUvraBZHQKEmGPfbblB1fZQoaAZoCWgPQwj/zCA+sJBzQJSGlFKUaBVL5GgWR0ChJit03fhudX2UKGgGaAloD0MIrrfNVEjccUCUhpRSlGgVS9ZoFkdAoSY56D5CW3V9lChoBmgJaA9DCFlpUgr6XnBAlIaUUpRoFUvcaBZHQKEmRkvsZ511fZQoaAZoCWgPQwjp19ZP/8hxQJSGlFKUaBVL12gWR0ChJqJD/lySdX2UKGgGaAloD0MIYTjXMEN4cUCUhpRSlGgVS8xoFkdAoSanhfjS5XV9lChoBmgJaA9DCOmedY0WcG5AlIaUUpRoFUvNaBZHQKEmy1UEPlN1fZQoaAZoCWgPQwg8LxUb81FvQJSGlFKUaBVL4mgWR0ChJxQDNhVmdX2UKGgGaAloD0MICHWRQln5cECUhpRSlGgVS8toFkdAoScxCD28I3V9lChoBmgJaA9DCB8vpMNDQW9AlIaUUpRoFUvQaBZHQKEnNAzHjp91fZQoaAZoCWgPQwi+S6lLRmRzQJSGlFKUaBVNJQFoFkdAoSdxu89Oh3V9lChoBmgJaA9DCEUqjC1E03FAlIaUUpRoFUvMaBZHQKEne4zabnZ1fZQoaAZoCWgPQwjbwB2oU8hvQJSGlFKUaBVL5WgWR0ChJ36/h2nsdX2UKGgGaAloD0MIDAQBMrTyckCUhpRSlGgVTQkBaBZHQKEoAfYjB2x1fZQoaAZoCWgPQwjrAfOQqclvQJSGlFKUaBVL1WgWR0ChKAHSv1UVdX2UKGgGaAloD0MInaBNDh8mcUCUhpRSlGgVS8xoFkdAoSgrMJQcgnV9lChoBmgJaA9DCKfNOA2RXnBAlIaUUpRoFUvMaBZHQKEoNyLAHml1fZQoaAZoCWgPQwhI+rSKfoFyQJSGlFKUaBVL2GgWR0ChKDc94eLfdX2UKGgGaAloD0MI/p3t0VsOckCUhpRSlGgVS+poFkdAoSg/jENvwXV9lChoBmgJaA9DCKOTpda7JXNAlIaUUpRoFUvWaBZHQKEoXupCKJl1fZQoaAZoCWgPQwgnoImwoatxQJSGlFKUaBVLy2gWR0ChKJh3JPqLdX2UKGgGaAloD0MIBYcXRCRpcUCUhpRSlGgVS+VoFkdAoSjQIMSbpnV9lChoBmgJaA9DCILjMm7q/HBAlIaUUpRoFUvZaBZHQKEo2VuaWop1fZQoaAZoCWgPQwh/iXjr/L5yQJSGlFKUaBVLtmgWR0ChKSrV4HHFdX2UKGgGaAloD0MINNb+zjYCckCUhpRSlGgVS9xoFkdAoSlADzRQanV9lChoBmgJaA9DCNf7jXZcdHNAlIaUUpRoFUveaBZHQKEpQhDgIhR1fZQoaAZoCWgPQwiKc9TRMS9yQJSGlFKUaBVL8mgWR0ChKVdc0LtvdX2UKGgGaAloD0MI0VeQZmz3cUCUhpRSlGgVS9RoFkdAoSlmz0HyE3V9lChoBmgJaA9DCEG7Q4oBpVFAlIaUUpRoFUuLaBZHQKEphrcCYC11fZQoaAZoCWgPQwhYVS+/ExdzQJSGlFKUaBVL4WgWR0ChKYrl/6O6dX2UKGgGaAloD0MImu0KfXBZcUCUhpRSlGgVS8poFkdAoSnVgfEGaHV9lChoBmgJaA9DCAFsQIS46m5AlIaUUpRoFUvUaBZHQKEp6d7OVxF1fZQoaAZoCWgPQwjylNV0/fNxQJSGlFKUaBVL12gWR0ChKiCt7rs0dX2UKGgGaAloD0MIFxIwurw9c0CUhpRSlGgVS9doFkdAoSowr+YMOXV9lChoBmgJaA9DCAeVuI6xCXJAlIaUUpRoFUvnaBZHQKEqVVNpM6B1fZQoaAZoCWgPQwgIA8+9h/1vQJSGlFKUaBVL6GgWR0ChKnuC5EtvdX2UKGgGaAloD0MId2ouN5g3b0CUhpRSlGgVS81oFkdAoSquY0EX+HV9lChoBmgJaA9DCPt1pzvPV3JAlIaUUpRoFU0EAWgWR0ChKvoTGo73dX2UKGgGaAloD0MIKzI6IEk5cUCUhpRSlGgVS+xoFkdAoSsDW3BpH3V9lChoBmgJaA9DCIi6D0CqynFAlIaUUpRoFUvBaBZHQKErBkZJkG11fZQoaAZoCWgPQwjNHmgFRjtyQJSGlFKUaBVLzGgWR0ChKwtBfKISdX2UKGgGaAloD0MIHQBxV69BcUCUhpRSlGgVS9JoFkdAoSsukHlfZ3V9lChoBmgJaA9DCEksKXffrXFAlIaUUpRoFUvgaBZHQKErXgx8D0V1fZQoaAZoCWgPQwic3O9QFEFwQJSGlFKUaBVL2WgWR0ChK1+qrBCVdX2UKGgGaAloD0MIpSxDHOv3cUCUhpRSlGgVS9poFkdAoSuDCWNWEXV9lChoBmgJaA9DCGvVrglps29AlIaUUpRoFUvZaBZHQKErhhXKbKB1fZQoaAZoCWgPQwiCV8udmVlxQJSGlFKUaBVL12gWR0ChK85/smfHdX2UKGgGaAloD0MIzEQRUvcOcUCUhpRSlGgVS+1oFkdAoSwnRRdhRnV9lChoBmgJaA9DCOnVAKUhxm9AlIaUUpRoFUvgaBZHQKEsO/bj94x1fZQoaAZoCWgPQwi5+rFJ/q1yQJSGlFKUaBVL0WgWR0ChLEos7MgVdX2UKGgGaAloD0MIWABTBo5OcUCUhpRSlGgVS8poFkdAoSxgVsUIs3V9lChoBmgJaA9DCL06x4Bs0XFAlIaUUpRoFUv1aBZHQKEsfdVvMr51fZQoaAZoCWgPQwjRIXAkUIJvQJSGlFKUaBVL12gWR0ChLLeuFHrhdX2UKGgGaAloD0MI6GnAIOm+UUCUhpRSlGgVS45oFkdAoSy8xdpqRHV9lChoBmgJaA9DCGST/Ijf33FAlIaUUpRoFUvLaBZHQKEs95AQg9x1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 680,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97ba135c90f1bf3fe5e559a18c2b6307cba3252d57aceb6f18c6674978d0561f
|
3 |
+
size 84637
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76262616377b91d11841759e61934cae3cce8346c3875e0e8d0e51042d5feb47
|
3 |
+
size 43073
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac2bd9cb20edfbe7fc06b170e2b3fdc4c23bd8cc4326915d24fe4c4fdc27a454
|
3 |
+
size 211025
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 284.
|
|
|
1 |
+
{"mean_reward": 284.18643666587025, "std_reward": 19.61940729263206, "is_deterministic": true, "n_eval_episodes": 200, "eval_datetime": "2022-05-20T03:14:43.241379"}
|