Commit
·
fd771cf
1
Parent(s):
9667c42
Upload PPO LunarLander-v2 trained agent - 2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 284.31 +/- 22.79
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f557da33cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f557da33d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f557da33dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f557da33e60>", "_build": "<function ActorCriticPolicy._build at 0x7f557da33ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f557da33f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f557da3d050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f557da3d0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f557da3d170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f557da3d200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f557da3d290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f557da7ebd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651722725.538844, "learning_rate": 0.0003, "tensorboard_log": "./ppo_LunarLander-v2_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABotKb2+6ro/9cMpv+2VmT4urHU87vp9vQAAAAAAAAAAZq4IvY9ud7olAeC2BA3asZ58bLozBwQ2AACAPwAAgD9gaJ2+OjM0P3vpBr4ZnxG/ENCTvgifCrwAAAAAAAAAAOZT5z1LuwY/AVeDvnSl1L5k7+i7kdySvQAAAAAAAAAAWpKLveEwlrrDC0gzRHDHr+GAt7qOI9CzAAAAAAAAgD/A4i0+IhuYPycaEz9pRuG+NvaBPpFuMD4AAAAAAAAAAECyx73b//I9WWSNPpc1bL7tQvk8di+OPAAAAAAAAAAAs+5fPlLKij8KMe4+qvzwvgIOoz6i5Ts9AAAAAAAAAABAdIu9I/E0PaLmST6hAZi+ryi1ve3wID0AAAAAAAAAACDJSr65IK4/6b8av8fP8r4Gj2W+YuyBvgAAAAAAAAAAM82QPKQNGbvCjE68Ypc6PN06YbzvbyQ9AACAPwAAgD8gRSU+4W0dP5+fMr6lDs2+vk6HPR0AtrwAAAAAAAAAADN6lTwp1E66+DlVNu9gDjJdDaA7/ueAtQAAgD8AAIA/pl3NPeFQkbpVuHE6YWbeNTuU2DqicIm5AAAAAAAAAACa0Uo9Qf2RP7Zt+z0qgwy/w1zVPS6vkb0AAAAAAAAAAM0dt7xIhYO6vjT3tu+m6LFz4g47E64QNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpd3oY/4wcECUhpRSlIwBbJRL64wBdJRHQJxjvmxMWXV1fZQoaAZoCWgPQwjQXn08dPluQJSGlFKUaBVL5mgWR0CcY9dYGMXKdX2UKGgGaAloD0MI6xuY3Ki/ckCUhpRSlGgVS+1oFkdAnGPlrEcbSHV9lChoBmgJaA9DCFpmEYptMnJAlIaUUpRoFU0AAWgWR0CcZDO2RaHLdX2UKGgGaAloD0MItyqJ7EMYcUCUhpRSlGgVTQQBaBZHQJxktS75Ec91fZQoaAZoCWgPQwhgzJasyhhzQJSGlFKUaBVNOwFoFkdAnGTt/4Irv3V9lChoBmgJaA9DCJet9UVCsm9AlIaUUpRoFUv1aBZHQJxk7TVlPJt1fZQoaAZoCWgPQwiXrmAbcZtvQJSGlFKUaBVL8mgWR0CcZeacZtN0dX2UKGgGaAloD0MIGlJF8WqXcECUhpRSlGgVTQABaBZHQJxmNMYdhiN1fZQoaAZoCWgPQwiAgosV9VFwQJSGlFKUaBVL8WgWR0CcZmje9Ba+dX2UKGgGaAloD0MIVkj5STVSbUCUhpRSlGgVS91oFkdAnGbmkN4JNXV9lChoBmgJaA9DCMHEH0WdB3BAlIaUUpRoFUvvaBZHQJxnUI5YHPh1fZQoaAZoCWgPQwjboswG2flxQJSGlFKUaBVL3mgWR0CcZ2aKUFB6dX2UKGgGaAloD0MIWvW52srScUCUhpRSlGgVTRIBaBZHQJxn9clgMMJ1fZQoaAZoCWgPQwh6F+/H7eFMQJSGlFKUaBVLzGgWR0CcaFJ6po9LdX2UKGgGaAloD0MI6xotB7pVc0CUhpRSlGgVS/VoFkdAnGh8aOxSpHV9lChoBmgJaA9DCMSww5g0cHNAlIaUUpRoFUv/aBZHQJxr5n6Eal11fZQoaAZoCWgPQwgQ6iKF8hlwQJSGlFKUaBVNBAFoFkdAnGwm2oegc3V9lChoBmgJaA9DCFxV9l0RkHFAlIaUUpRoFUvraBZHQJxsV1s+FDh1fZQoaAZoCWgPQwj5npEIjVtwQJSGlFKUaBVL+2gWR0CcbK1F6RhddX2UKGgGaAloD0MI7rCJzNyjc0CUhpRSlGgVTRcBaBZHQJxsty5qdpZ1fZQoaAZoCWgPQwgQzxJkBCZGQJSGlFKUaBVLp2gWR0CcbM8JD3M7dX2UKGgGaAloD0MIQ+T09XybbkCUhpRSlGgVS/hoFkdAnGzPPLPldXV9lChoBmgJaA9DCE9d+SzPiW5AlIaUUpRoFU0TAWgWR0CcbPamoBJadX2UKGgGaAloD0MItOVcimvUcECUhpRSlGgVS/RoFkdAnG2aDwpe/3V9lChoBmgJaA9DCPtcbcX+GXJAlIaUUpRoFU0CAWgWR0Ccbotu1ndwdX2UKGgGaAloD0MIw7mGGdo6c0CUhpRSlGgVTSUBaBZHQJxvbxjJ+2F1fZQoaAZoCWgPQwhvgm+avgxxQJSGlFKUaBVL8GgWR0Ccb6Iq9XcQdX2UKGgGaAloD0MIXoB9dOqBbkCUhpRSlGgVS91oFkdAnG+mjwhGIHV9lChoBmgJaA9DCNO84xTdYnBAlIaUUpRoFU0YAWgWR0CccDVQAMlUdX2UKGgGaAloD0MIkPeqlQnUcECUhpRSlGgVS/loFkdAnHBO7YkE93V9lChoBmgJaA9DCJ89l6nJ8XJAlIaUUpRoFU07AWgWR0CccNQ+lj3FdX2UKGgGaAloD0MI6lxRSoj9bUCUhpRSlGgVS85oFkdAnI2KMrEtNHV9lChoBmgJaA9DCBIT1PAtJHBAlIaUUpRoFUvbaBZHQJyNqYsunMt1fZQoaAZoCWgPQwgGED6UaIxyQJSGlFKUaBVL3WgWR0CcjcRzBAObdX2UKGgGaAloD0MI7u4Bui+Wb0CUhpRSlGgVTQQBaBZHQJyOl67dzn11fZQoaAZoCWgPQwiHokCfyOlKQJSGlFKUaBVLmGgWR0CcjqkwevIPdX2UKGgGaAloD0MIptO6DWpmcECUhpRSlGgVTQsBaBZHQJyOnb9If8x1fZQoaAZoCWgPQwhPXfksz5lyQJSGlFKUaBVNBwFoFkdAnI7X9FWn0nV9lChoBmgJaA9DCBX/d0RFn3FAlIaUUpRoFUv9aBZHQJyO8L+glGB1fZQoaAZoCWgPQwicoiO5/CByQJSGlFKUaBVNAAFoFkdAnI8Hg9/z8XV9lChoBmgJaA9DCMQGCyepZnJAlIaUUpRoFUv0aBZHQJyPcp/gBLh1fZQoaAZoCWgPQwimgR/VMARxQJSGlFKUaBVL52gWR0Ccj/UwztTldX2UKGgGaAloD0MIAHSYL6+GckCUhpRSlGgVS+poFkdAnJDinDR+jXV9lChoBmgJaA9DCCQrvwxGc3JAlIaUUpRoFUvZaBZHQJyRFyMkyDZ1fZQoaAZoCWgPQwhLd9fZUBlzQJSGlFKUaBVL/WgWR0CckZQo1DSgdX2UKGgGaAloD0MITDYebDFVb0CUhpRSlGgVTQABaBZHQJySSVE/jbV1fZQoaAZoCWgPQwhzMJsAg3lwQJSGlFKUaBVL+GgWR0Cckp0gbIcSdX2UKGgGaAloD0MIswjFVtCAPUCUhpRSlGgVS6JoFkdAnJOouCf6GnV9lChoBmgJaA9DCIU/w5u1oHFAlIaUUpRoFUvOaBZHQJyUzpjc2zh1fZQoaAZoCWgPQwjG4GHaN9NvQJSGlFKUaBVL72gWR0CclPR15jYqdX2UKGgGaAloD0MIm6p7ZPPTbkCUhpRSlGgVS/FoFkdAnJUc7EHdGnV9lChoBmgJaA9DCOuOxTapoHJAlIaUUpRoFU0BAWgWR0CclWWkJrtWdX2UKGgGaAloD0MIQup29tVicECUhpRSlGgVS99oFkdAnJW4DHOryXV9lChoBmgJaA9DCL9H/fXK+3FAlIaUUpRoFUvvaBZHQJyVxQdjoZB1fZQoaAZoCWgPQwh+yFuu/o1yQJSGlFKUaBVL62gWR0CcleJ7sv7FdX2UKGgGaAloD0MI5rD7juGbT0CUhpRSlGgVS6xoFkdAnJYbofSx7nV9lChoBmgJaA9DCHL5D+m3h3BAlIaUUpRoFUvoaBZHQJyWZNGmUGF1fZQoaAZoCWgPQwi2aWyvxTpzQJSGlFKUaBVNEAFoFkdAnJauNgjQiXV9lChoBmgJaA9DCLrb9dKUBXBAlIaUUpRoFU0tAWgWR0CcmRIbwSamdX2UKGgGaAloD0MIEyujkU+ob0CUhpRSlGgVS/ZoFkdAnJkZUgjhUHV9lChoBmgJaA9DCGgG8YHdHnJAlIaUUpRoFUvWaBZHQJyZNzDGcWl1fZQoaAZoCWgPQwgVrHE2nYNxQJSGlFKUaBVNCQFoFkdAnJp0w8GLUHV9lChoBmgJaA9DCM8UOq+xTm9AlIaUUpRoFUvgaBZHQJycGmdiDul1fZQoaAZoCWgPQwjUR+APPy1xQJSGlFKUaBVL5mgWR0CcnCPfbblBdX2UKGgGaAloD0MIQPm7d9TZckCUhpRSlGgVTXcBaBZHQJycztdAxBV1fZQoaAZoCWgPQwiPGD23kIBxQJSGlFKUaBVNCgFoFkdAnJ1CDRMN+nV9lChoBmgJaA9DCI54spuZnnNAlIaUUpRoFU0uAWgWR0CcnUwvQF9sdX2UKGgGaAloD0MI5DCYv4JZcUCUhpRSlGgVS9hoFkdAnJ29E5Qxe3V9lChoBmgJaA9DCCtu3GI+FXBAlIaUUpRoFUv3aBZHQJyeDrVvuPV1fZQoaAZoCWgPQwjgvg6cs75wQJSGlFKUaBVNCwFoFkdAnJ5CcTakAXV9lChoBmgJaA9DCDKqDONuRXBAlIaUUpRoFUv0aBZHQJyeTh73PAx1fZQoaAZoCWgPQwgBbECEeKdyQJSGlFKUaBVNGAFoFkdAnJ5Q6IWP93V9lChoBmgJaA9DCEZfQZoxlnFAlIaUUpRoFU0TAWgWR0CcnoU3GXHBdX2UKGgGaAloD0MIrHE2HYFQcUCUhpRSlGgVTT8BaBZHQJyf4yGi5/d1fZQoaAZoCWgPQwhcVfZdUTdyQJSGlFKUaBVL6GgWR0CcoHa6BiCrdX2UKGgGaAloD0MIQgddwqGJcECUhpRSlGgVS91oFkdAnKF+/k/8mHV9lChoBmgJaA9DCKoqNBALfnFAlIaUUpRoFU0SAWgWR0Ccoemg8KXwdX2UKGgGaAloD0MIo+iBj0GIckCUhpRSlGgVS+1oFkdAnKPA9zOopHV9lChoBmgJaA9DCHxkc9W84m9AlIaUUpRoFUvQaBZHQJykySt/4It1fZQoaAZoCWgPQwjekbHa/NNyQJSGlFKUaBVNGAFoFkdAnKVaH9FWn3V9lChoBmgJaA9DCGq+Sj42EHFAlIaUUpRoFUvvaBZHQJylmLfk3jx1fZQoaAZoCWgPQwiFX+rnjaZwQJSGlFKUaBVL4WgWR0CcpbXoTwlTdX2UKGgGaAloD0MI4qyImuh1ckCUhpRSlGgVTQ8BaBZHQJylvta6jFh1fZQoaAZoCWgPQwi0AkNWN9VyQJSGlFKUaBVNgwFoFkdAnKXi+xnnMnV9lChoBmgJaA9DCFWFBmIZjXBAlIaUUpRoFUvoaBZHQJyl8RujynV1fZQoaAZoCWgPQwi/RLx1/jFxQJSGlFKUaBVNDQFoFkdAnKYWaQV9GHV9lChoBmgJaA9DCGouNxgqMXJAlIaUUpRoFUv5aBZHQJymXrY5DJF1fZQoaAZoCWgPQwgTueAMfoxzQJSGlFKUaBVNMQFoFkdAnKcaQRwqAnV9lChoBmgJaA9DCPceLjlug3BAlIaUUpRoFUvraBZHQJynlOh0yQB1fZQoaAZoCWgPQwgK16NwvSVyQJSGlFKUaBVL6mgWR0CcqTAMDwH8dX2UKGgGaAloD0MIOPOrOQBvc0CUhpRSlGgVTQwBaBZHQJypOX1J17p1fZQoaAZoCWgPQwhfevtzUdNwQJSGlFKUaBVL82gWR0CcqeavA44qdX2UKGgGaAloD0MI6iXGMj13ckCUhpRSlGgVTW8BaBZHQJyqO/oJRfp1fZQoaAZoCWgPQwhiEcMO4/ZyQJSGlFKUaBVL7GgWR0Ccq1VbRne0dX2UKGgGaAloD0MIeqpDbsaUcUCUhpRSlGgVS/NoFkdAnKyF6zE74nV9lChoBmgJaA9DCM3oR8MpX3FAlIaUUpRoFUvkaBZHQJys6cpb2UV1fZQoaAZoCWgPQwjXE10XfnJuQJSGlFKUaBVL52gWR0CcrOqtHQQddX2UKGgGaAloD0MIs82N6UnqcECUhpRSlGgVS9toFkdAnK0JEc81XXV9lChoBmgJaA9DCBBAahNnz3NAlIaUUpRoFU0HAWgWR0CcrbvMbFS9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efda56945f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efda5694680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efda5694710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efda56947a0>", "_build": "<function ActorCriticPolicy._build at 0x7efda5694830>", "forward": "<function ActorCriticPolicy.forward at 0x7efda56948c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efda5694950>", "_predict": "<function ActorCriticPolicy._predict at 0x7efda56949e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efda5694a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efda5694b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efda5694b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efda56e7300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3500000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651876620.738418, "learning_rate": 0.0003, "tensorboard_log": "runs/ukc180ez", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4IDxxbRK5W56UuzJNdDhdmYM6CduFOQAAgD8AAAAAls3FPi+0IT90n6y+cN8Zv/Gy7D4+jnC+AAAAAAAAAACa6U88v1i2PyPooD4Ng+U9vC8nvDKC6LwAAAAAAAAAAHPvub0jIes+fuuEPse6vr7icIM89vkXPgAAAAAAAAAAOksDPsRVkT5i/Ba+MMravlp1hj1aAxi+AAAAAAAAAAAanUC9vXN6PrD92z1Glbu+rVvPPcIDIr0AAAAAAAAAAJozEL3TolQ/9nk9vL8R1r66L5+9AM2VPAAAAAAAAAAAwDErPtLLJD/DtCm+l2PhvowOUT1Gi6K9AAAAAAAAAADNi5y8bsa7P5KKnb7KpbI+2FGzupcuQb0AAAAAAAAAABrDKL336H0+ekQ0Psmd1b59MhQ+ELjUuQAAAAAAAAAAZuwHva4bibrDZR44d7u2MgFFE7sDUTe3AACAPwAAgD+zQ9G9bMZqP37hHzzukrS+FQZmvjLM0bsAAAAAAAAAAABA7jt0BGo/AFvnPWos9L5U2h49y3DfPQAAAAAAAAAADdbMvV/XkD+b2k2+0v7FvpJ9jb6zfmy9AAAAAAAAAAADaaU+v9MpPymtpb42nA+/drbLPsJVfr4AAAAAAAAAAJrq8zw4i8W7296AvImEgDwzCBq99cRaPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.3020416, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOQ8nMB3rc0CUhpRSlIwBbJRL4IwBdJRHQK921sY2sJZ1fZQoaAZoCWgPQwhIowIn21hwQJSGlFKUaBVL7GgWR0Cvdwy4nWrfdX2UKGgGaAloD0MI8NsQ4zWrcUCUhpRSlGgVS89oFkdAr3dxrJr+HnV9lChoBmgJaA9DCE2espru2HFAlIaUUpRoFUvUaBZHQK93sqS5iEx1fZQoaAZoCWgPQwjAB69d2vVxQJSGlFKUaBVL72gWR0Cvd7KqGUOedX2UKGgGaAloD0MIaLCp8+iXcUCUhpRSlGgVS91oFkdAr3fNuDSPVHV9lChoBmgJaA9DCE+uKZDZbnFAlIaUUpRoFUvWaBZHQK93126kIop1fZQoaAZoCWgPQwhwP+CBAXZvQJSGlFKUaBVL52gWR0Cvd9WDg62fdX2UKGgGaAloD0MIJZNTO0NVc0CUhpRSlGgVS+xoFkdAr3ffm/336HV9lChoBmgJaA9DCGuCqPuAjXBAlIaUUpRoFUvgaBZHQK94F2IwdsB1fZQoaAZoCWgPQwi8lSU6iyhzQJSGlFKUaBVL2GgWR0CveCDgIhQndX2UKGgGaAloD0MIV7Q5zm2UckCUhpRSlGgVS+FoFkdAr3g4yAQQMHV9lChoBmgJaA9DCNcYdEKoeHJAlIaUUpRoFUvbaBZHQK94luVHFxZ1fZQoaAZoCWgPQwjFrBdDuaNxQJSGlFKUaBVL2WgWR0CveSMFt8/mdX2UKGgGaAloD0MI+daH9YbMcUCUhpRSlGgVS89oFkdAr3lVLDhtL3V9lChoBmgJaA9DCH0DkxvF5nJAlIaUUpRoFUvLaBZHQK95oWSEDhd1fZQoaAZoCWgPQwj7OnDOiAp0QJSGlFKUaBVL0GgWR0CvecNhE0BPdX2UKGgGaAloD0MIR4/f23QFckCUhpRSlGgVS9VoFkdAr3oOJSBK+XV9lChoBmgJaA9DCNS19j7VVXJAlIaUUpRoFUvGaBZHQK96jgiu+yt1fZQoaAZoCWgPQwi/RLx1/hJzQJSGlFKUaBVL2GgWR0CverNZV4ordX2UKGgGaAloD0MI5BHcSFlubkCUhpRSlGgVS9loFkdAr3q33SKFZnV9lChoBmgJaA9DCAUyO4tet29AlIaUUpRoFUvXaBZHQK961SpBHCp1fZQoaAZoCWgPQwgs8uuHWHByQJSGlFKUaBVL1WgWR0CvetYz7/GVdX2UKGgGaAloD0MICeBm8WKpckCUhpRSlGgVS+FoFkdAr3rul9BrvnV9lChoBmgJaA9DCO1HisiwNnFAlIaUUpRoFUvRaBZHQK97AfMfRu11fZQoaAZoCWgPQwhq3JvfsBpvQJSGlFKUaBVNEwFoFkdAr3tJjz7MxHV9lChoBmgJaA9DCJSkayZfQ3NAlIaUUpRoFUvmaBZHQK97dkoWpId1fZQoaAZoCWgPQwivCz84H/NxQJSGlFKUaBVL/2gWR0Cve7OwgTysdX2UKGgGaAloD0MIqn8QydBCcECUhpRSlGgVS+hoFkdAr3ve/Dcdo3V9lChoBmgJaA9DCCdPWU1Xrm9AlIaUUpRoFUvkaBZHQK98Zk2gnMN1fZQoaAZoCWgPQwhdwqG3uHBxQJSGlFKUaBVL9GgWR0CvfNgzP8htdX2UKGgGaAloD0MIX5fhP13ecUCUhpRSlGgVS+doFkdAr3z1R3u/lHV9lChoBmgJaA9DCCb/k787enJAlIaUUpRoFUvUaBZHQK99GpAlfJF1fZQoaAZoCWgPQwi/8EqSp85xQJSGlFKUaBVL/WgWR0CvfW4HX2/SdX2UKGgGaAloD0MIr30BvXDMcUCUhpRSlGgVS8toFkdAr319SwW30HV9lChoBmgJaA9DCFosRfJV+nBAlIaUUpRoFUvKaBZHQK99unrpqyp1fZQoaAZoCWgPQwh9CRUc3kpvQJSGlFKUaBVL1WgWR0CvfcUt7KJVdX2UKGgGaAloD0MIQGzp0VQnc0CUhpRSlGgVS8xoFkdAr33vRRdhRnV9lChoBmgJaA9DCOHtQQiImHJAlIaUUpRoFUvqaBZHQK9+DvMKTjh1fZQoaAZoCWgPQwiXOsjrgZNyQJSGlFKUaBVL8WgWR0CvfkG6GxlhdX2UKGgGaAloD0MIgXhdv+B6cUCUhpRSlGgVS89oFkdAr35BuO0b+HV9lChoBmgJaA9DCKZ9c3/1+nBAlIaUUpRoFUvraBZHQK9+TloUSIx1fZQoaAZoCWgPQwjajT7mA19uQJSGlFKUaBVLyWgWR0CvflVTrE9/dX2UKGgGaAloD0MIll6bjRUWcUCUhpRSlGgVS9hoFkdAr368gW8AaXV9lChoBmgJaA9DCB9I3jmUl3BAlIaUUpRoFUvwaBZHQK9/Og7HQyB1fZQoaAZoCWgPQwgSTgtedLpxQJSGlFKUaBVL3WgWR0Cvf4Xr+o9+dX2UKGgGaAloD0MILNMvEW+fcUCUhpRSlGgVS81oFkdAr3/aQxN7B3V9lChoBmgJaA9DCGLX9nbLDHRAlIaUUpRoFUvXaBZHQK+AKIuXeFd1fZQoaAZoCWgPQwiL+iR32ExvQJSGlFKUaBVLxWgWR0CvgDZCWu5jdX2UKGgGaAloD0MInS/2XvySckCUhpRSlGgVS+9oFkdAr4BBeu3c6HV9lChoBmgJaA9DCINQ3seRGnNAlIaUUpRoFUvPaBZHQK+AaKtPpIN1fZQoaAZoCWgPQwjMft3pjphwQJSGlFKUaBVL2WgWR0CvgMGsmv4edX2UKGgGaAloD0MI/kY7bvhZcUCUhpRSlGgVS9xoFkdAr4DUdPtUoHV9lChoBmgJaA9DCGcmGM7173FAlIaUUpRoFUvKaBZHQK+BHEYwZfl1fZQoaAZoCWgPQwiWy0bn/EZyQJSGlFKUaBVL52gWR0Cvj3T6zmfXdX2UKGgGaAloD0MInUZaKq+8ckCUhpRSlGgVS9poFkdAr497eoDPnnV9lChoBmgJaA9DCI7MI38wKXBAlIaUUpRoFUvdaBZHQK+PkXzDn/11fZQoaAZoCWgPQwgW3XpNz+hzQJSGlFKUaBVL5WgWR0Cvj6Q1JlJ6dX2UKGgGaAloD0MIZ9XnausJckCUhpRSlGgVTQYBaBZHQK+Qmvllsgx1fZQoaAZoCWgPQwhWvJF5pG1xQJSGlFKUaBVL4WgWR0CvkJo+fRNRdX2UKGgGaAloD0MIL+Blhk2gc0CUhpRSlGgVS8doFkdAr5DUJ4SpSHV9lChoBmgJaA9DCMyZ7Qp9eG9AlIaUUpRoFUvpaBZHQK+RBkMkQf91fZQoaAZoCWgPQwj3zf3V4wpyQJSGlFKUaBVLymgWR0CvkSlg+hXbdX2UKGgGaAloD0MI+s+aH79qcUCUhpRSlGgVS8poFkdAr5E1q+JxenV9lChoBmgJaA9DCF7WxAJfvHJAlIaUUpRoFU1rAWgWR0CvkTVLSNOudX2UKGgGaAloD0MI0gDeAklDc0CUhpRSlGgVS81oFkdAr5HVuivgWXV9lChoBmgJaA9DCPZDbLAwSnFAlIaUUpRoFU0EAWgWR0Cvkh9dE9dNdX2UKGgGaAloD0MIm5DWGLQZckCUhpRSlGgVS/xoFkdAr5Irnied1HV9lChoBmgJaA9DCE/ltKck0XJAlIaUUpRoFUvmaBZHQK+SUnm7rcF1fZQoaAZoCWgPQwi2aWyvBbdxQJSGlFKUaBVL4WgWR0Cvkn+/pMYedX2UKGgGaAloD0MIJCao4RsocUCUhpRSlGgVS+NoFkdAr5K9wm3OOnV9lChoBmgJaA9DCBnKiXYVVm9AlIaUUpRoFUvcaBZHQK+S0n0Cih51fZQoaAZoCWgPQwjj4xOys1RxQJSGlFKUaBVL9WgWR0CvkvmsNlRQdX2UKGgGaAloD0MIVn4ZjNEycUCUhpRSlGgVS+5oFkdAr5L+so2GZnV9lChoBmgJaA9DCKq6RzYXkHFAlIaUUpRoFUvRaBZHQK+TphZyMk11fZQoaAZoCWgPQwgVi98UVrtyQJSGlFKUaBVLxWgWR0Cvk+ccuJ1rdX2UKGgGaAloD0MINfCjGnbvbkCUhpRSlGgVS+RoFkdAr5Py3LFGX3V9lChoBmgJaA9DCPC/lexYVW5AlIaUUpRoFUveaBZHQK+UELThHb11fZQoaAZoCWgPQwhxAtNpndlxQJSGlFKUaBVL2mgWR0CvlFrG7z06dX2UKGgGaAloD0MIj95wHzkvc0CUhpRSlGgVS9doFkdAr5RdJYkmhXV9lChoBmgJaA9DCLw7MlYb3nBAlIaUUpRoFUvbaBZHQK+UahsZYPp1fZQoaAZoCWgPQwhYHM78qqtwQJSGlFKUaBVL12gWR0CvlQNyxRl6dX2UKGgGaAloD0MIGCE82nhvckCUhpRSlGgVS81oFkdAr5UjbDdgv3V9lChoBmgJaA9DCCXqBZ/mwXBAlIaUUpRoFUvSaBZHQK+VbQAMlTp1fZQoaAZoCWgPQwiaXfdWZPBxQJSGlFKUaBVLu2gWR0CvlY26shgWdX2UKGgGaAloD0MIU0Kwqp5oc0CUhpRSlGgVS/9oFkdAr5XzLbHp8nV9lChoBmgJaA9DCISfOIA+0nBAlIaUUpRoFUvWaBZHQK+WMfDDTBt1fZQoaAZoCWgPQwhckgN2dXFzQJSGlFKUaBVL6GgWR0CvloD2i+L4dX2UKGgGaAloD0MIofMau4TtcUCUhpRSlGgVS/poFkdAr5afphWo33V9lChoBmgJaA9DCIQu4dAbtnFAlIaUUpRoFUveaBZHQK+XaBXCCSR1fZQoaAZoCWgPQwh6G5sdqfVyQJSGlFKUaBVL2mgWR0Cvl3yVfNRndX2UKGgGaAloD0MI+U7MejG4cECUhpRSlGgVS/doFkdAr5eGLiuMdnV9lChoBmgJaA9DCF+3CIy1OXFAlIaUUpRoFUvRaBZHQK+Xp7b+Lm91fZQoaAZoCWgPQwjbMXVXth5yQJSGlFKUaBVL12gWR0Cvl9NHhCMQdX2UKGgGaAloD0MIMnVXdoFPc0CUhpRSlGgVS/5oFkdAr5fiG+K0lnV9lChoBmgJaA9DCKacL/ZetHBAlIaUUpRoFUvxaBZHQK+YKlt0mt11fZQoaAZoCWgPQwjXiGAcXBtvQJSGlFKUaBVLyGgWR0CvmDV/DtPYdX2UKGgGaAloD0MIyJQPQdWdc0CUhpRSlGgVS89oFkdAr5hugctGu3V9lChoBmgJaA9DCH7FGi4y4HFAlIaUUpRoFUvdaBZHQK+Y5T5wfhd1fZQoaAZoCWgPQwhIqYQn9FVuQJSGlFKUaBVL12gWR0CvmO+JP69CdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 852, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d76ca2be8a9a76f2b6cf467ccc8c00840807977b51a74e3f9453c62a6998441
|
3 |
+
size 144000
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,25 +4,25 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,28 +35,28 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log": "
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining":
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efda56945f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efda5694680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efda5694710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efda56947a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efda5694830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efda56948c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efda5694950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efda56949e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efda5694a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efda5694b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efda5694b90>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efda56e7300>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 3500000,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651876620.738418,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/ukc180ez",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4IDxxbRK5W56UuzJNdDhdmYM6CduFOQAAgD8AAAAAls3FPi+0IT90n6y+cN8Zv/Gy7D4+jnC+AAAAAAAAAACa6U88v1i2PyPooD4Ng+U9vC8nvDKC6LwAAAAAAAAAAHPvub0jIes+fuuEPse6vr7icIM89vkXPgAAAAAAAAAAOksDPsRVkT5i/Ba+MMravlp1hj1aAxi+AAAAAAAAAAAanUC9vXN6PrD92z1Glbu+rVvPPcIDIr0AAAAAAAAAAJozEL3TolQ/9nk9vL8R1r66L5+9AM2VPAAAAAAAAAAAwDErPtLLJD/DtCm+l2PhvowOUT1Gi6K9AAAAAAAAAADNi5y8bsa7P5KKnb7KpbI+2FGzupcuQb0AAAAAAAAAABrDKL336H0+ekQ0Psmd1b59MhQ+ELjUuQAAAAAAAAAAZuwHva4bibrDZR44d7u2MgFFE7sDUTe3AACAPwAAgD+zQ9G9bMZqP37hHzzukrS+FQZmvjLM0bsAAAAAAAAAAABA7jt0BGo/AFvnPWos9L5U2h49y3DfPQAAAAAAAAAADdbMvV/XkD+b2k2+0v7FvpJ9jb6zfmy9AAAAAAAAAAADaaU+v9MpPymtpb42nA+/drbLPsJVfr4AAAAAAAAAAJrq8zw4i8W7296AvImEgDwzCBq99cRaPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.3020416,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOQ8nMB3rc0CUhpRSlIwBbJRL4IwBdJRHQK921sY2sJZ1fZQoaAZoCWgPQwhIowIn21hwQJSGlFKUaBVL7GgWR0Cvdwy4nWrfdX2UKGgGaAloD0MI8NsQ4zWrcUCUhpRSlGgVS89oFkdAr3dxrJr+HnV9lChoBmgJaA9DCE2espru2HFAlIaUUpRoFUvUaBZHQK93sqS5iEx1fZQoaAZoCWgPQwjAB69d2vVxQJSGlFKUaBVL72gWR0Cvd7KqGUOedX2UKGgGaAloD0MIaLCp8+iXcUCUhpRSlGgVS91oFkdAr3fNuDSPVHV9lChoBmgJaA9DCE+uKZDZbnFAlIaUUpRoFUvWaBZHQK93126kIop1fZQoaAZoCWgPQwhwP+CBAXZvQJSGlFKUaBVL52gWR0Cvd9WDg62fdX2UKGgGaAloD0MIJZNTO0NVc0CUhpRSlGgVS+xoFkdAr3ffm/336HV9lChoBmgJaA9DCGuCqPuAjXBAlIaUUpRoFUvgaBZHQK94F2IwdsB1fZQoaAZoCWgPQwi8lSU6iyhzQJSGlFKUaBVL2GgWR0CveCDgIhQndX2UKGgGaAloD0MIV7Q5zm2UckCUhpRSlGgVS+FoFkdAr3g4yAQQMHV9lChoBmgJaA9DCNcYdEKoeHJAlIaUUpRoFUvbaBZHQK94luVHFxZ1fZQoaAZoCWgPQwjFrBdDuaNxQJSGlFKUaBVL2WgWR0CveSMFt8/mdX2UKGgGaAloD0MI+daH9YbMcUCUhpRSlGgVS89oFkdAr3lVLDhtL3V9lChoBmgJaA9DCH0DkxvF5nJAlIaUUpRoFUvLaBZHQK95oWSEDhd1fZQoaAZoCWgPQwj7OnDOiAp0QJSGlFKUaBVL0GgWR0CvecNhE0BPdX2UKGgGaAloD0MIR4/f23QFckCUhpRSlGgVS9VoFkdAr3oOJSBK+XV9lChoBmgJaA9DCNS19j7VVXJAlIaUUpRoFUvGaBZHQK96jgiu+yt1fZQoaAZoCWgPQwi/RLx1/hJzQJSGlFKUaBVL2GgWR0CverNZV4ordX2UKGgGaAloD0MI5BHcSFlubkCUhpRSlGgVS9loFkdAr3q33SKFZnV9lChoBmgJaA9DCAUyO4tet29AlIaUUpRoFUvXaBZHQK961SpBHCp1fZQoaAZoCWgPQwgs8uuHWHByQJSGlFKUaBVL1WgWR0CvetYz7/GVdX2UKGgGaAloD0MICeBm8WKpckCUhpRSlGgVS+FoFkdAr3rul9BrvnV9lChoBmgJaA9DCO1HisiwNnFAlIaUUpRoFUvRaBZHQK97AfMfRu11fZQoaAZoCWgPQwhq3JvfsBpvQJSGlFKUaBVNEwFoFkdAr3tJjz7MxHV9lChoBmgJaA9DCJSkayZfQ3NAlIaUUpRoFUvmaBZHQK97dkoWpId1fZQoaAZoCWgPQwivCz84H/NxQJSGlFKUaBVL/2gWR0Cve7OwgTysdX2UKGgGaAloD0MIqn8QydBCcECUhpRSlGgVS+hoFkdAr3ve/Dcdo3V9lChoBmgJaA9DCCdPWU1Xrm9AlIaUUpRoFUvkaBZHQK98Zk2gnMN1fZQoaAZoCWgPQwhdwqG3uHBxQJSGlFKUaBVL9GgWR0CvfNgzP8htdX2UKGgGaAloD0MIX5fhP13ecUCUhpRSlGgVS+doFkdAr3z1R3u/lHV9lChoBmgJaA9DCCb/k787enJAlIaUUpRoFUvUaBZHQK99GpAlfJF1fZQoaAZoCWgPQwi/8EqSp85xQJSGlFKUaBVL/WgWR0CvfW4HX2/SdX2UKGgGaAloD0MIr30BvXDMcUCUhpRSlGgVS8toFkdAr319SwW30HV9lChoBmgJaA9DCFosRfJV+nBAlIaUUpRoFUvKaBZHQK99unrpqyp1fZQoaAZoCWgPQwh9CRUc3kpvQJSGlFKUaBVL1WgWR0CvfcUt7KJVdX2UKGgGaAloD0MIQGzp0VQnc0CUhpRSlGgVS8xoFkdAr33vRRdhRnV9lChoBmgJaA9DCOHtQQiImHJAlIaUUpRoFUvqaBZHQK9+DvMKTjh1fZQoaAZoCWgPQwiXOsjrgZNyQJSGlFKUaBVL8WgWR0CvfkG6GxlhdX2UKGgGaAloD0MIgXhdv+B6cUCUhpRSlGgVS89oFkdAr35BuO0b+HV9lChoBmgJaA9DCKZ9c3/1+nBAlIaUUpRoFUvraBZHQK9+TloUSIx1fZQoaAZoCWgPQwjajT7mA19uQJSGlFKUaBVLyWgWR0CvflVTrE9/dX2UKGgGaAloD0MIll6bjRUWcUCUhpRSlGgVS9hoFkdAr368gW8AaXV9lChoBmgJaA9DCB9I3jmUl3BAlIaUUpRoFUvwaBZHQK9/Og7HQyB1fZQoaAZoCWgPQwgSTgtedLpxQJSGlFKUaBVL3WgWR0Cvf4Xr+o9+dX2UKGgGaAloD0MILNMvEW+fcUCUhpRSlGgVS81oFkdAr3/aQxN7B3V9lChoBmgJaA9DCGLX9nbLDHRAlIaUUpRoFUvXaBZHQK+AKIuXeFd1fZQoaAZoCWgPQwiL+iR32ExvQJSGlFKUaBVLxWgWR0CvgDZCWu5jdX2UKGgGaAloD0MInS/2XvySckCUhpRSlGgVS+9oFkdAr4BBeu3c6HV9lChoBmgJaA9DCINQ3seRGnNAlIaUUpRoFUvPaBZHQK+AaKtPpIN1fZQoaAZoCWgPQwjMft3pjphwQJSGlFKUaBVL2WgWR0CvgMGsmv4edX2UKGgGaAloD0MI/kY7bvhZcUCUhpRSlGgVS9xoFkdAr4DUdPtUoHV9lChoBmgJaA9DCGcmGM7173FAlIaUUpRoFUvKaBZHQK+BHEYwZfl1fZQoaAZoCWgPQwiWy0bn/EZyQJSGlFKUaBVL52gWR0Cvj3T6zmfXdX2UKGgGaAloD0MInUZaKq+8ckCUhpRSlGgVS9poFkdAr497eoDPnnV9lChoBmgJaA9DCI7MI38wKXBAlIaUUpRoFUvdaBZHQK+PkXzDn/11fZQoaAZoCWgPQwgW3XpNz+hzQJSGlFKUaBVL5WgWR0Cvj6Q1JlJ6dX2UKGgGaAloD0MIZ9XnausJckCUhpRSlGgVTQYBaBZHQK+Qmvllsgx1fZQoaAZoCWgPQwhWvJF5pG1xQJSGlFKUaBVL4WgWR0CvkJo+fRNRdX2UKGgGaAloD0MIL+Blhk2gc0CUhpRSlGgVS8doFkdAr5DUJ4SpSHV9lChoBmgJaA9DCMyZ7Qp9eG9AlIaUUpRoFUvpaBZHQK+RBkMkQf91fZQoaAZoCWgPQwj3zf3V4wpyQJSGlFKUaBVLymgWR0CvkSlg+hXbdX2UKGgGaAloD0MI+s+aH79qcUCUhpRSlGgVS8poFkdAr5E1q+JxenV9lChoBmgJaA9DCF7WxAJfvHJAlIaUUpRoFU1rAWgWR0CvkTVLSNOudX2UKGgGaAloD0MI0gDeAklDc0CUhpRSlGgVS81oFkdAr5HVuivgWXV9lChoBmgJaA9DCPZDbLAwSnFAlIaUUpRoFU0EAWgWR0Cvkh9dE9dNdX2UKGgGaAloD0MIm5DWGLQZckCUhpRSlGgVS/xoFkdAr5Irnied1HV9lChoBmgJaA9DCE/ltKck0XJAlIaUUpRoFUvmaBZHQK+SUnm7rcF1fZQoaAZoCWgPQwi2aWyvBbdxQJSGlFKUaBVL4WgWR0Cvkn+/pMYedX2UKGgGaAloD0MIJCao4RsocUCUhpRSlGgVS+NoFkdAr5K9wm3OOnV9lChoBmgJaA9DCBnKiXYVVm9AlIaUUpRoFUvcaBZHQK+S0n0Cih51fZQoaAZoCWgPQwjj4xOys1RxQJSGlFKUaBVL9WgWR0CvkvmsNlRQdX2UKGgGaAloD0MIVn4ZjNEycUCUhpRSlGgVS+5oFkdAr5L+so2GZnV9lChoBmgJaA9DCKq6RzYXkHFAlIaUUpRoFUvRaBZHQK+TphZyMk11fZQoaAZoCWgPQwgVi98UVrtyQJSGlFKUaBVLxWgWR0Cvk+ccuJ1rdX2UKGgGaAloD0MINfCjGnbvbkCUhpRSlGgVS+RoFkdAr5Py3LFGX3V9lChoBmgJaA9DCPC/lexYVW5AlIaUUpRoFUveaBZHQK+UELThHb11fZQoaAZoCWgPQwhxAtNpndlxQJSGlFKUaBVL2mgWR0CvlFrG7z06dX2UKGgGaAloD0MIj95wHzkvc0CUhpRSlGgVS9doFkdAr5RdJYkmhXV9lChoBmgJaA9DCLw7MlYb3nBAlIaUUpRoFUvbaBZHQK+UahsZYPp1fZQoaAZoCWgPQwhYHM78qqtwQJSGlFKUaBVL12gWR0CvlQNyxRl6dX2UKGgGaAloD0MIGCE82nhvckCUhpRSlGgVS81oFkdAr5UjbDdgv3V9lChoBmgJaA9DCCXqBZ/mwXBAlIaUUpRoFUvSaBZHQK+VbQAMlTp1fZQoaAZoCWgPQwiaXfdWZPBxQJSGlFKUaBVLu2gWR0CvlY26shgWdX2UKGgGaAloD0MIU0Kwqp5oc0CUhpRSlGgVS/9oFkdAr5XzLbHp8nV9lChoBmgJaA9DCISfOIA+0nBAlIaUUpRoFUvWaBZHQK+WMfDDTBt1fZQoaAZoCWgPQwhckgN2dXFzQJSGlFKUaBVL6GgWR0CvloD2i+L4dX2UKGgGaAloD0MIofMau4TtcUCUhpRSlGgVS/poFkdAr5afphWo33V9lChoBmgJaA9DCIQu4dAbtnFAlIaUUpRoFUveaBZHQK+XaBXCCSR1fZQoaAZoCWgPQwh6G5sdqfVyQJSGlFKUaBVL2mgWR0Cvl3yVfNRndX2UKGgGaAloD0MI+U7MejG4cECUhpRSlGgVS/doFkdAr5eGLiuMdnV9lChoBmgJaA9DCF+3CIy1OXFAlIaUUpRoFUvRaBZHQK+Xp7b+Lm91fZQoaAZoCWgPQwjbMXVXth5yQJSGlFKUaBVL12gWR0Cvl9NHhCMQdX2UKGgGaAloD0MIMnVXdoFPc0CUhpRSlGgVS/5oFkdAr5fiG+K0lnV9lChoBmgJaA9DCKacL/ZetHBAlIaUUpRoFUvxaBZHQK+YKlt0mt11fZQoaAZoCWgPQwjXiGAcXBtvQJSGlFKUaBVLyGgWR0CvmDV/DtPYdX2UKGgGaAloD0MIyJQPQdWdc0CUhpRSlGgVS89oFkdAr5hugctGu3V9lChoBmgJaA9DCH7FGi4y4HFAlIaUUpRoFUvdaBZHQK+Y5T5wfhd1fZQoaAZoCWgPQwhIqYQn9FVuQJSGlFKUaBVL12gWR0CvmO+JP69CdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 852,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d5182f103f90a27a539b64e54dd5363c1cd1c37cc825f8f8bafc39696d34e3
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c23b31873cbceb45cf80ef7f0caa96e83c884015ca91cef8d488b1424b48f1a4
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3370631714f32e5a107ed216b49e0b049a5f15cbc2c8ad50d923a48bd804a61
|
3 |
+
size 188762
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 284.3133589147444, "std_reward": 22.79345171784305, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T00:18:53.309357"}
|